APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3915 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-043915Received: 08/02/04Collected by: JJ/MMExtracted: N/ACollected on: 08/02/04Tested: 08/02-12/04Reported: 08/20/04Reported: 08/20/04Sample Description: Water from MW-14/21.Project Description: 4-12812JPL GW-3Q04

Analysis of Water Samples

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-1-3Q04	EB-1-8/2/04	MW-14-1	MW-14-2
				04-03915-1	04-03915-2	04-03915-3	04-03915-4
Dilution Factor		-		1	1	1	1
PERCHLORATE	314.0	µg/L	4	< 4	< 4	< 4	9.3
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	2J	< 10	< 10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	0.3J	0.3J
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result					
Component Analyzed	Method	Unit	PQL	DUPE-1-3Q04	EB-1-8/2/04	MW-14-1	MW-14-2		
				04-03915-1	04-03915-2	04-03915-3	04-03915-4		
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
P-ISOPROPYLTOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYLENE CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	< 1	< 1	<1		
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}g/L$	10	< 10	< 10	< 10	< 10		
NAPHTHALENE	524.2	$_{\mu}{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-PROPYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
STYRENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TETRACHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	0.5J		
TOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	4.6		
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result			
Component Analyzed	Method	Unit	PQL	MW-14-3	MW-14-4	MW-14-5	
				04-03915-5	04-03915-6	04-03915-7	
Dilution Factor				1	1	1	
PERCHLORATE	314.0	$_{\mu}g/L$	4	7.3	8.7	< 4	
VOLATILE ORGANIC COMPOUNDS		•					
Dilution Factor				1	1	1	
BENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10	
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	μ g /L	0.5	< 0.5	< 0.5	< 0.5	
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	μg/L	0.5	0.4J	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	μ0/ μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-14-3 04-03915-5	MW-14-4 04-03915-6	MW-14-5 04-03915-7
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu \rm g/L}$	10	< 10	< 10	< 10
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	<1
NAPHTHALENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu \rm g/L}$	0.5	0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	1	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
				Analys	is Result	
Component Analyzed Method Uni	t PQ	T.	MW-21-	•		4W-21-3

					Analysis Resul	t	
Component Analyzed	Method	Unit	\mathbf{PQL}	MW-21-1	MW-21-2	MW-21-3	
				04-03915-8	04-03915-9	04-03915-10	
Dilution Factor				1	1	1	
PERCHLORATE	314.0	$_{\mu}g/L$	4	5.1	< 4	< 4	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	
Component Analyzed	Method	Unit	PQL	MW-21-1	MW-21-2	MW-21-3
			- •-	04-03915-8	04-03915-9	04-03915-10
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	μ8/~ μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μα, – μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μ8, – μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μ8, - μg/L	10	< 10	< 10	<10
CARBON TETRACHLORIDE	524.2	μ8/ – μg/L	0,5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0,5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu g/L$	0.5	0.8	< 0.5	0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	0.6	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	0.5	0.6
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

							Analysis Re	esult
Component Analyzed			Method	Unit	PQL	MW-21-1	MW-21-2	MW-21-3
<u> </u>						04-03915-8	04-03915-9	04-03915-10
P-ISOPROPYLTOLUE	٩E		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORI	IDE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ET	THER (MTBE)		524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
4-METHYL-2-PENTAN	ONE (MIBK)		524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLORO	DETHANE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLORO	DETHANE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHE	NE		524.2	$_{\mu}g/L$	0.5	0.5	2.9	2.7
TOLUENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBEN	ZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBEN	ZENE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETH	ANE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETH	ANE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	4.2	1.0	1.4
TRICHLOROFLUORO	METHANE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPRO	PANE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TR	IFLUOROETH	ANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBEN	ZENE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBEN	ZENE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
<u></u>		o				Analys	is Result	
Component Analyzed	Method	Unit	PQL	i	MW-21-4	-		TB-1-8/2/04
_ v			•		-03915-11			04-03915-13
Dilution Factor				-	1		1	1
PERCHLORATE	314.0	$\mu g/L$	4		< 4	<	4	-

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

						Analysis Resul	<u></u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component Analyzed	Method	Unit	POL	MW-21-4	•	
VOLATLE ORGANIC COMPOUNDS 1 1 1 1 Dibuion Factor 524.2 $\mu g/L$ 0.5 <0.5 <0.5 BROMOBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 BROMODENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 BROMODICHLOROMETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 BROMODICHLOROMETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 BROMOMETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 SC-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-BUTANONE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-BUTANONE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROBENZENE 524.2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VOLATILE ORGANIC COMPOUNDS					~	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		524.2		05			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
BROMODICHLOROMETHANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ BROMOPORM 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ BROMOMETHANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ BROMOMETHANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ SEC-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ 2-BUTANONE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CARBON TETRACHLORIDE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CHLOROBENZENE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CHLORODIBROMOMETHANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CHLORODIBROMOMETHANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CHLOROFORM 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 $c.0.5$ $c.0.5$ $c.0.5$ 1,2-DIBROMOSTHANE (EDB) 524.2 $\mu g/L$ 0.5 $c.0.5$			•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-				
BROMOMETHANE524.2 $\mu g/L$ 0.5<0.5<0.5<0.5N-BUTYLBENZENE524.2 $\mu g/L$ 0.5<0.5							
N-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 < 0.5 SEC-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 TERT-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 ZBUTANONE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CARBON TETRACHLORIDE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLORODETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SEC-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 TERT-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 2-BUTANONE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CARBON TETRACHLORIDE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLORODIBROMOMETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMOETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIGHOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIGHOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			-				
TERT-BUTYLBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-BUTANONE 524.2 $\mu g/L$ 10 <10 <10 <10 <10 CARBON TETRACHLORIDE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLORODIBROMOMETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROPTHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1/2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1/2-DIBROMOSTHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1/2-DICHLOROBENZENE 524.2			•				
2-BUTANONE524.2 $\mu g/L$ 10c10c10c10CARBON TETRACHLORIDE524.2 $\mu g/L$ 0.5<0.5			-				
CARBON TETRACHLORIDE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 <0.5 CHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 <0.5 CHLORODIBROMOMETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,2-DIBROMOETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,2-DIRDOMOETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,4-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 <0.5 <0.5 <0.5 <			•				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CARBON TETRACHLORIDE						
CHLORODIBROMOMETHANE524.2 μ g/L0.5<0.5<0.5<0.5CHLOROETHANE524.2 μ g/L0.5<0.5			-				
CHLOROETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 CHLOROFORM 524.2 $\mu g/L$ 0.5 2.9 3.7 < 0.5 CHLOROMETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 2-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 4-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMOETHANE (EDB) 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMOETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DIBROMOETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,4-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,1-DICHLOROBENZENE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,1-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,1-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,2-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5 1,1-DICHLOROETHANE 524.2 $\mu g/L$ 0.5 < 0.5 < 0.5 < 0.5			•				
CHLOROFORM 524.2 $\mu g/L\mu g/L0.52.93.7< 0.5CHLOROMETHANE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.52-CHLOROTOLUENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.54-CHLOROTOLUENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,2-DIBROMO-3-CHLOROPROPANE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,2-DIBROMO-3-CHLOROPROPANE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,2-DIBROMOSTHANE(EDB)524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,2-DICHLOROBENZENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,3-DICHLOROBENZENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,4-DICHLOROBENZENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,4-DICHLOROBENZENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,1-DICHLOROBENZENE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,1-DICHLOROETHANE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,1-DICHLOROETHANE524.2\mu g/L\mu g/L0.5< 0.5< 0.5< 0.51,2-DICHLOROETHENE524.2$			-				
CHLOROMETHANE524.2 $\mu g/L$ 0.5<0.5<0.5<0.52-CHLOROTOLUENE524.2 $\mu g/L$ 0.5<0.5	CHLOROFORM						
2-CHLOROTOLUENE 524.2 μ g/L0.5<0.5<0.5<0.5<0.54-CHLOROTOLUENE 524.2 μ g/L0.5<0.5	CHLOROMETHANE	524.2					
4-CHLOROTOLUENE 524.2 $\mu g/L$ 0.5<0.5<0.5<0.51,2-DIBROMO-3-CHLOROPROPANE 524.2 $\mu g/L$ 0.5<0.5	2-CHLOROTOLUENE						
1,2-DIBROMO-3-CHLOROPROPANE 524.2 µg/L 0.5 <0.5	4-CHLOROTOLUENE	524.2					
1,2-DIBROMOETHANE (EDB) 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 DIBROMOMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,3-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,4-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 DICHLOROBIFLUOROMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPANE 524.2 μ g/L	1,2-DIBROMO-3-CHLOROPROPANE	524.2	-				
DIBROMOMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,3-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,4-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 DICHLORODIFLUOROMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 <	1,2-DIBROMOETHANE (EDB)	524.2					
1,2-DICHLOROBENZENE524.2 μ g/L0.5<0.5<0.5<0.5<0.51,3-DICHLOROBENZENE524.2 μ g/L0.5<0.5	DIBROMOMETHANE	524.2	-				
1,3-DICHLOROBENZENE 524.2 μ g/L0.5<0.5<0.5<0.51,4-DICHLOROBENZENE 524.2 μ g/L0.5<0.5	1,2-DICHLOROBENZENE	524.2			< 0.5		
1,4-DICHLOROBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 DICHLORODIFLUOROMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <t< td=""><td>1,3-DICHLOROBENZENE</td><td>524.2</td><td>-</td><td></td><td></td><td>< 0.5</td><td></td></t<>	1,3-DICHLOROBENZENE	524.2	-			< 0.5	
DICHLORODIFLUOROMETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 CIS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td>1,4-DICHLOROBENZENE</td><td>524.2</td><td>•</td><td>0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td></t<>	1,4-DICHLOROBENZENE	524.2	•	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROETHANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 CIS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 1.2 1.7 <0.5 TRANS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5	DICHLORODIFLUOROMETHANE	524.2				< 0.5	
1,2-DICHLOROETHANE524.2 μ g/L0.5<0.5<0.5<0.5<0.51,1-DICHLOROETHENE524.2 μ g/L0.5<0.5	1,1-DICHLOROETHANE	524.2	-	0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 CIS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 1.2 1.7 <0.5 TRANS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	1,2-DICHLOROETHANE	524.2	•	0.5	< 0.5		< 0.5
CIS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 1.2 1.7 <0.5 TRANS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	1,1-DICHLOROETHENE	524.2	-				< 0.5
TRANS-1,2-DICHLOROETHENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	CIS-1,2-DICHLOROETHENE	524.2		0.5	1.2	1.7	< 0.5
1,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	TRANS-1,2-DICHLOROETHENE	524.2		0.5	< 0.5		
1,3-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 2,2-DICHLOROPROPANE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 1,1-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 CIS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	1,2-DICHLOROPROPANE	524.2		0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE524.2 μ g/L0.5<0.5<0.5<0.51,1-DICHLOROPROPENE524.2 μ g/L0.5<0.5	1,3-DICHLOROPROPANE	524.2		0.5	< 0.5		
1,1-DICHLOROPROPENE524.2 μ g/L0.5<0.5<0.5<0.5CIS-1,3-DICHLOROPROPENE524.2 μ g/L0.5<0.5	2,2-DICHLOROPROPANE	524.2	•	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE524.2 μ g/L0.5<0.5<0.5<0.5TRANS-1,3-DICHLOROPROPENE524.2 μ g/L0.5<0.5	1,1-DICHLOROPROPENE	524.2	-				
TRANS-1,3-DICHLOROPROPENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 ETHYLBENZENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5 HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	CIS-1,3-DICHLOROPROPENE	524.2	-				
ETHYLBENZENE $524.2 \mu g/L$ $0.5 < 0.5 < 0.5$ <0.5 HEXACHLOROBUTADIENE $524.2 \mu g/L$ $0.5 < 0.5$ <0.5 <0.5	TRANS-1,3-DICHLOROPROPENE	524.2	•	0.5			
HEXACHLOROBUTADIENE 524.2 μ g/L 0.5 <0.5 <0.5 <0.5	ETHYLBENZENE	524.2		0.5		< 0.5	< 0.5
	HEXACHLOROBUTADIENE	524.2		0.5	< 0.5	< 0.5	
	ISOPROPYLBENZENE (CUMENE)	524.2		0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-21-4 04-03915-11	MW-21-5 04-03915-12	TB-1-8/2/04 04-03915-13
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	< 10	< 10
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	< 1
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	4.5	8.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	0.3J	0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5

Component Analyzed	Method	Unit	PQL	EB-1-8/2/04 04-03915-2	Analysis Result MW-14-1 04-03915-3	MW-14-2 04-03915-4
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	<0.01 1	< 0.01	< 0.01
CHROMIUM	200.8	μg/L	0.1	0.52	12.8	6.9
					Analysis Result	
Component Analyzed	Method	Unit	PQL	MW-14-3 04-03915-5	MW-21-1 04-03915-8	MW-21-2 04-03915-9
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor CHROMIUM	200.8	$_{\mu g}/L$	0.1	1 5.2	1 5.3	1 7.8

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result	
Component Analyzed	Method	Unit	\mathbf{PQL}	MW-21-3	MW-21-4	MW-21-5
				04-03915-10	04-03915-11	04-03915-12
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}g/L$	0.1	8.2	6.9	6.0

PQL: Practical Quantitation Limit.MDL: Method Detection Limit.N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitt D

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3915

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-14/21./4-12812 For GEOFON, Inc.

APCL Service No: 04-3915

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, I	nc. Sample ID	APCL Sample ID	
MW-14-5		04-03915-7	-
MW-14-4		04-03915-6	
MW-14-3		04-03915-5	
MW-14-2		04-03915-4	
MW-14-1		04-03915-3	
DUPE-1-3Q0)4	04-03915-1	
MW-21-5		04-03915-12	
MW-21-4		04-03915-11	
MW-21-3		04-03915-10	
MW-21-2		04-03915-9	
MW-21-1		04-03915-8	
EB-1-8/2/04		04-03915-2	
TB-1-8/2/04		04-03915-13	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196 (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium percent difference in the Serial Dilution Test performed on the sample MW-21-4 was 18%, outside of 10% criteria. However, the recovery in Post Digestion Spike test was within control limits.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

	N	C	HAIN-OF-0	CUSTO	DY REC	ORD	LABORATORY COPY
1 N C O R P O R A 22632 GOLDEN SPRINGS DR., SU DIAMOND BAR, CA 91765 • (909) 3	「 E □ NTE 270 996-7662 • FAX (909	9) 396-1455	Mw-	14			0113
GEOFON'S LAB COORDINATOR LAB COORDINATOR'S	HONE	LAB COORDINATOR'S		LABORATORY SI			MAIL REPORT (COMPANY NAME)
Scott Burner 909 391	0 7662	9043	961455			enny Chan	RECIPIENT NAME
PROJECT NAME: SPL COLD - 3004 MLD - 14	_		-12812	LABORATORY PI	1828 90	STATORY 12X	
PROJECT CONTACT PROJECT PHONE NUM	BER) ulse	LABORATORY A		1'. 0	ADDRESS O 22637 Coolden Springe De. 12
	<u>8729</u>	909.39 CLIENT	6 1455	CITY, STATE AN		lia Ave.	STY. STATE AND ZIPCODE
PROJECT ADDRESS CITY. STATE AND ZIPC 1800 Dail Coloue Dr. Pasadery	a. CA	US Nar	y SWDIV	Chine		91710	Diamond Bar, CA 91
PROJECT MANAGER		PROJECT MANAGER'S	FAS			VI /	
Tony Ford 409:	396 7662	4043	961455	N NSES	<u> </u>		
E	st /	Ine Preserved	Cont Clevel 1. A	Analyses 414-3		N////	
$\stackrel{E}{\stackrel{\longrightarrow}{\longrightarrow}} Sample Identifier \sqrt{2}$	Date ri	INE Preser +	CON CLEW A	1/10/3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·///	Comments
HID-54-5	8.2.01/159	Har 4	IV Norma				
	1121	Neve		$ \downarrow \downarrow \downarrow \land \downarrow \land \downarrow$		┼━╌┼╴╴╀╶╍┼	
2 MW-14-4	1240		而	X X			
HW-14-3		Hel -			$\sqrt{}$		
3	1320	Hues 3 None 3		X	Δ Ă _	┤─┤─┼─┼	
4 <u>HW-14-2</u>	1343				X X		1 1
MID-14-7							395
5 1105-19-1-		HER 345		X X	XX		
6 Dupe - 2 - 3004		Hel 4		XX			
•		New /	<u> ₩ </u>			┽┼┼╌┼	
7	╞━━━┾╼╍╼	┼──┼──	<u>├</u> /				
8			1 9		700	<u> </u>	· · · · · · · · · · · · · · · · · · ·
9	Į			8.2.0	4		
	┼──┼╼──	+ + /	++			┼┼┼┼	
10			<u>+</u>	╧╌┼╾┥	<u> </u>	╉╼┼╴╂╌╡	
SAMPLES COLLECTED BY 33 + NM	COURIER AND AIR B						
RELINQUISHED BY	Realert	REGEIVED BY	DATE	TIME			
Biller	M	n Origina		\$1510			
1 source contraction of the							
				1		<u> </u>	
Distribution: Whit	e - Laboratory	(To be returned	with Analytical F	(col	denrod - Pro	ject File; Yellow	- Project Data Manager

.

1

	ON		CHAIN-OF-	CUSTODY R	ECORD	LABORATORY COPY
INCORPO 22632 GOLDEN SPRINGS DIAMOND BAR, CA 91765	RATED SDR., SUITE270	FAX (909) 396-14 <u>55</u>	MW	-21		0114
GEOFON'S LAB COORDINATOR LAB COORD	DINATOR'S PHONE	LAB COORDI	NATOR'S FAX 3961455	LABORATORY SERVICE ID	LABORATORY CONTACT	MAIL REPORT (COMPANY NAME)
PROJECT NAME: PROJECT L	396 76	66 709	PROJECT NUMBER	LABORATORY PHONE 909 590 1828	1 LABORATORY FRO 909 590 1498	RECIPIENT NAME FORD
PROJECT NAME: SPC GLD - 3007 MLD - PROJECT CONTACT PROJECT P		PROJECT FAX		LABORATORY ADDRESS	-	
J. D. Jones 714	120 8729	909	396 1455	13760 Mg	ipholia Ave.	22632 John Sprince Dr. 220
PROJECT ADDRESS CITY, STAT	E AND ZIPCODE	CLIEST	lawy SUDDIV	CITY. STATE AND ZIPCODE	Å 91710	Diamond Bay, CA 91765
	$(\mathbf{x}, \mathbf{x}, \mathbf{y}, \mathbf{x}) \in \mathbf{x}$	TROUT OF MAN	NAGER'S CA		7 777	
Tony Ford HOME	109 396	7662 900	73961455	Analyses 000		
Sample Identifier	Matrix Date		ried scont clevel			Comments
1 MW-21-5	80.0		5 III Norma			
2 Mw-21-4			10 1 1	XXXX		MSIMSD
3 HW-21-3		0908	5	XXXX		
4 MW-21-2		D932		XXXX		
5 MW-21-7		1002		XXXX		
6 <u>= = B - 7 - 8/2/04</u>		0919		XXXX		015
7 TB-1-8/2/04		- 1	2 4 4	X		2910
8				1. Nous		
			8			
9			/ 0'	2.04	╶┼╌┼╶┼╶┼╴	
10						
SAMPLES COLLECTED BY JJ + HM	COURJER	AND AIR BILL NUMBER:		<u></u>		COLER TEMPERATURE UPON RECEIPT
		RECEIVED BY	DATE 8-2-04	TIME	SAMPLE	E'S CONDITION UPON RECEIPT
6-6- 4- 6- B		Kight Aug		1510		
Suchange Storing	//	min -	pr c.og		<u></u>	
· · · · · · · · · · · · · · · · · · ·				+		
Distribution	n: White - Labo	ratory (To be ret	urned with Analytical I	Report); Goldenrod	- Project File; Yellow -	Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3925 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-043925	Received:	08/03/04	
Collected by: JJ/MM	Extracted:	N/A	
Collected on: 08/03/04	Tested:	08/03-12/04	
	Reported:	08/16/04	,
Sample Description: Water fro	m MW-18/	′MW-7	
Project Description: 4-12812	JPL GW-	3Q04	

Analysis of Water Samples

				Analysis Result			
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04	MW-7	MW-18-2	
				04-03925-1	04-03925-2	04-03925-3	
Dilution Factor				1	100	1	
PERCHLORATE	314.0	$\mu g/L$	4	< 4	3,760	< 4	
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$\mu g/L$	10	< 10	<10	< 10	
CARBON TETRACHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	58.0	< 0.5	
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	16.2	< 0.5	
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	5.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result				
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04	MW-7	MW-18-2		
				04-03925-1	04-03925-2	04-03925-3		
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
HEXACHLOROBUTADIENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
P-ISOPROPYLTOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}g/L$	1	<1	<1	<1		
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}g/L$	10	< 10	< 10	< 10		
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
N-PROPYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
STYRENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
TETRACHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	15.0	< 0.5		
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
TRICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	6.3	< 0.5		
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	5.0	< 0.5		
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5		
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-18-3 04-03925-4	MW-18-4 04-03925-5	MW-18-5 04-03925-6	TB-2-8/3/04 04-03925-7		
Dilution Factor				1	1	1	1		
PERCHLORATE	314.0	μg/L	4	6.4	13.9	< 4	-		
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1	1		
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	μg/L	10	< 10	<10	< 10	< 10		
CARBON TETRACHLORIDE	524.2	μg/L	0.5	0.7	4.0	< 0.5	< 0.5		
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$\mu g/L$	0.5	1.2	0.9	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	μ8/ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-18-3	MW-18-4	MW-18-5	TB-2-8/3/04		
				04-03925-4	04-03925-5	04-03925-6	04-03925-7		
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	<1	< 1		
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	<10	< 10	< 10	<10		
NAPHTHALENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TETRACHLOROETHENE	524.2	$_{\mu}g/L$	0.5	0.4J	1.2	< 0.5	< 0.5		
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	0.7	1.2	< 0.5	< 0.5		
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

				Analysi	s Result
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04	MW-7
				04-03925-1	04-03925-2
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01
Dilution Factor				1	1
CHROMIUM	200.8	$_{\mu \rm g/L}$	0.1	0.35	8.7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result	i
Component Analyzed	Method	Unit	PQL	MW-18-2	MW-18-3	MW-18-4
				04-03925-3	04-03925-4	04-03925-5
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	4.6	9.3	5.4

PQL: Practical Quantitation Limit.MDL: Method Detection Limit.N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully_submit Lau

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3925

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710

> Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-18/MW-7/4-12812

For GEOFON, Inc.

APCL Service No: 04-3925

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-18-5	04-03925-6
MW-18-4	04-03925-5
MW-18-3	04-03925-4
MW-18-2	04-03925-3
MW-7	04-03925-2
EB-2-8/3/04	04-03925-1
TB-2-8/3/04	04-03925-7

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

		CHAIN-	-OF-CUSTO	DY RE	CORD	LABORATORY COPY
	UITE 270	М	1W-18			01142
DIAMOND BAR, CA 91765 • (909) 3	396-7662 • FAX (909) 396-14	455	LABORATORYS		LABORATORY CONTACT	MAIL REPORT (COMPANY NAME)
		093961455				CERTEN
PROJECT NAME: PROJECT LOCATION		PROJECT NUMBER		PHONE L	Henry Chan 109 590 1498	BECIPIENT NAME FOR D
PROJECT CONTACT	BER PROJECT		LABORATORY	ADDRESS		ADDRESSO SH
PROJECT CONTACT J. D. Jones 914920	58729 9c	59 396 1450	5 13710	Maonu	olia Que.	22632 60 Iden Springo Dr. 270
PROJECT ADDRESS CITY. STATE AND ZIPCO	CODE CLIENT	Naw SWD	CITY, STATE A	AND ZIPCOD	91210	CITY, STATE AND ZIPCODE Nomand Bar, CA 91765
4800 Dall Grove Dr. Pasaden PROJECT MANAGER'S	DROJECT	NGAN DIN D ECT MANAGER'S FAX			X ZOV Z	Mumoro Cur Cr 11/10
Toon Ford PHONE 909	3967662 90	09 396 145	55		***//	
				んべい	14//	//
$\stackrel{E}{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \bullet}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle \phantom}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle }{\frac{\scriptstyle \phantom}{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle \phantom}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle \phantom}{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle \phantom}{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle}}{\frac{\scriptstyle }{\frac{\scriptstyle }{\frac{\scriptstyle}{\scriptstyle$	TITE Date TIME P	Preserved + of Cont	evel T. A.T. ARALIO		\$	Comments
	1017 Hone	. 4 III N	Hornal X X			
2 <u>Hw-18-4</u>	1050 Hel	5		XX		
3 MW-18-3	1114		$ \vee \vee $	XX		
4 DMW-18-2	1/43		XX	XX	00	25
5 Hw-7	0839		XX	XX		
6 = <u>59.1000000000000000000000000000000000000</u>	1107		XX	XX		
7 TB-2-813104	4 - Hu	124				
8	+					
		777	717	<u>↓</u>	┝╌╁╌╂╌╉	
9			7. 0. 40	pro		
10			8.3.0%	Ҟ҄҄ӏ		
SAMPLES COLLECTED BY 334MM	COURIER AND AIR BILL NUMBE					
RELINQUISHED BY	BECEIVED		DATE TIME		5402	PLE'S CONDITION UPON RECEIPT
Balado Stinan)	L'aller		1304 1315		······································	
	· /·····					
Distribution: Whit	e - Laboratory (To be	returned with Analy	ytical Report); Go	oldenrod - P	Project File; Yellow	- Project Data Manager

A P C L

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3938 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-043938 Received: 08/04/04 Collected by: JJ/MM/TM Extracted: N/A Collected on: 08/04/04 Tested: 08/04-12/04 Reported: 08/17/04 Sample Description: Water from MW-20 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

				Analysis Result			
Component Analyzed	Method	Unit	PQL	EB-3-8/4/04 04-03938-1	MW-20-1 04-03938-2	MW-20-2 04-03938-3	
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	
Dilution Factor				1	1	1	
CHROMIUM	200.8	$\mu g/L$	0.1	0.41	10.5	0.87	
Dilution Factor		•		1	1	1	
PERCHLORATE	314.0	$\mu g/L$	4	< 4	< 4	< 4	
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	-524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$\mu g/L$	10	<10	< 10	< 10	
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.7	
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				L	Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-3-8/4/04 04-03938-1	MW-20-1 04-03938-2	MW-20-2 04-03938-3
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.6	0.6	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}g/L$	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	`<0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-20-3 04-03938-4	MW-20-4	MW-20-5 04-03938-6	TB-3-8/4/04 04-03938-7		
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-		
Dilution Factor				1	1	1	1		
CHROMIUM	200.8	$\mu g/L$	0.1	12.7	6.2	6.8	-		
Dilution Factor				1	1	1	1		
PERCHLORATE	314.0	$\mu g/L$	4	< 4	< 4	< 4	-		
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1	1		
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	μg/L	10	< 10	<10	< 10	< 10		
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-20-3	MW-20-4	MW-20-5	TB-3-8/4/04	
				04-03938-4	04-03938-5	04-03938-6	04-03938-7	
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	0.8	1.2	0.9	0.5	
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	<1	< 1	
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10	
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.4J	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	0.3J	< 0.5	< 0.5	< 0.5	
TOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

 $N.D.:\ Not\ Detected\ or\ less\ than\ the\ practical\ quantitation\ limit.$

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully-submitted, mitchau

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3938

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-20/4-12812 For GEOFON, Inc.

APCL Service No: 04-3938

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	
MW-20-5	04-03938-6	
MW-20-4	04-03938-5	
MW-20-3	04-03938-4	
MW-20-2	04-03938-3	
MW-20-1	04-03938-2	
EB-3-8/4/04	04-03938-1	
TB-3-8/4/04	04-03938-7	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)), 314.0 (Perchlorate, low level),

200.8 (Chromium, Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) SW8260B:

Methylene Chloride in the amount of 1.1 ug/L was detected in the Method Blank of batch 04G3136, exceeding the 1 ug/L reporting limit. Similar levels of Methylene Chloride were also detected in the associated field samples, due to lab contamination.

(2) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the reporting limit.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

			(CHAIN-C	OF-CUS'	TODY	RECOF	SD	LABORAT	TORY COPY
		ЛN					NEC OF			
22632 GOLDEN	N SPRINGS DR., SU	T E ⊡ 396-7662 • FAX (909)	0.006 1466	MU	J- 20)-			\mathcal{O}	2
GEOFON'S LAB COORDINATOR	LAB COORDINATOR'S P	5 PHONE	LAB COORDINATOR	SFAX	LABOR/	ATORY SERVICE ID			MAIL REPORT (COMPANY NAM	3
Scott Burner	909 390	67662	<u>404 3</u>	96 145	5	TOOL BUONE	- hen	ing Cha		Ļ
<u>3PL GW - 3Q07</u>	MW-20			NUMBER		S90 182		590149	78 Onu Force	}
PROJECT CONTACT J. D. Jneo	PROJECT PHONE NUMB	BER 8729		396 HC	55 13°		laand	ia are	22632 Colden S	prince Dr. Str 270
PROJECT ADDRESS	CITY, STATE AND ZIPCO	CODE	CLIENT			TATE AND ZIPCOD			A CITY STATE AND ZIRCODE	· 0 ·
	Pasaden PROJECT MANAGER'S	5	US NOU	IS FA		hino,	CH Z	11/10	_ Il)contra L	a. CA 91965
TONY FOLD	PHONE 9095	396 7662	9093	396145	5	.5th		\$//	///	
1 (1		/ /	, ved	Ont	vel Ana	%		¥///		
Sample Identifier	Matr		Ine Preserved	of Cont CLEW	1		\$\\$ <u>`</u>	///	Comr	nents
1 MW-20-5		B.4.0124	HU 210		lomal X.	VX	\mathbf{x}		MSIMSD	
2 MW-20-4		0826		T ₁	T	$\frac{1}{2}$	$\overline{\mathbf{x}}$			· · · · · · · · · · · · · · · · · · ·
H12-20-3	'		+++	+++	+	`, `}/ ′	<u></u>		3038	
3	'	0851				<u>XIXI</u>	<u>X </u>			P
4 MW- 20-2		0914			$ \times $	X	\mathbf{X}			
5 MW-20-2		0934					$\overline{\mathbf{v}}$		3	
=R-3-8/4/	1.1				$++ \rightarrow$	식수	+			
6		0927	1 + +			XXY	<u> </u>			
7 TB-3-8/4	104 4		H4 2	- + .	+ X					
8		+								
				∓	4	- 4- 4	' ~+ +			
9				$\bot A$		8.4.04	/ _			
10										
SAMPLES COLLECTED BY 334	MI+Th	COURIER AND AIR BIL							COOLER TEMPERATURE UPON RECEIPT	
RELINQUISHED BY		R			DATE TIME			SAN	APLE'S CONDITION UPON RECEIPT	
Bichap Atria	. /		En Contraction		4-04 1120				·	
	····	"/]				
	White Whi	L				Coldanr	- Project	Cil- Vellow	- Project Data Manager	<u> </u>
		.e - Laboratory (With Anarya	,cai Keport,		<u>a - riojest .</u>		· FIOJOU Data manago	

A P C L

Applied Physics & Chemistry Laboratory

13760 Magnolis Ave. Chino CA 91710Tel. (909) 590-1828 Fax (909) 590-1498

September 01, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3962 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

Analysis of Water Samples

APCL Analytical Report

Service ID #: 801-043962	Received:	08/05/04
Collected by: JJ/MM	Extracted:	N/A
Collected on: 08/05/04	Tested:	08/05-12/04
	Reported:	08/17/04
Sample Description: Water fro	om MW-19,	MW-17
Project Description: 4-12812	JPL GW-	3Q04

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q04	EB-4-8/5/04	MW-17-2	MW-17-3
				04-03962-1	04-03962-2	04-03962-3	04-03962-4
Dilution Factor			-	1	1	1	2
PERCHLORATE	314.0	$\mu g/L$	4	< 1	< 4	17.0	109
VOLATILE ORGANIC COMPOUNDS		• • •					
Dilution Factor				1	L	1	1
BENZENE	524.2	"g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0,5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	1.0	9.7
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0,5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	< 0.5	0.8	2.7
CIILOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0,5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	"ց/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	,, "g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μα, μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

-

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q04	EB-4-8/5/04	MW-17-2	MW-17-3
				04-03962-1	04-03962-2	04-03962-3	04-03962-4
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0,5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICILOROPROPANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	µg/Ł	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	< 1	< ا	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	µg/L	10	< 10	< 10	< 10	< 10
NAPIITHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0,5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.6	0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICILOROBENZENE	524.2	"g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICIILOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	3.4	3.8
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu g}/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analys	is Result		
Component Analyzed	Method	Unit	PQL	MW-17-4 04-03962-5	MW-19-1 04-03962-6	MW-19-2 04-03962-7	MW-19-3 04-03962-8	
Dilution Factor				1	1	1	J	
PERCHLORATE	314.0	µg/L	4	<4	۰ < 1	7.1	9.7	
VOLATILE ORGANIC COMPOUNDS	514.0	μы, ш	-	(1	24	1.1	3-1	
Dilution Factor				1	1	1	1	
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	μ6/ D μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	րեյ հ µg/L	0.5	< 0.5	< 0.5	0.4J	< 0.5	
BROMOFORM	524.2	μց/ե	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOMETRANE	524.2	μ6/1/ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	μ6/10 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	μ6/5 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	μ6/2 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	μα/L	10	< 10	< 10	<10	< 10	
CARBON TETRACHLORIDE	524.2	μв/5 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	μ6/ L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	μ6/ L μg/L	0.5	< 0.5	< 0.5	0.4J	< 0.5	
CHLOROETHANE	524.2	μ6/ L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	μ6/L μg/L	0.5	< 0.5	< 0.5	0.9	< 0.5	
CHLOROMETHANE	521.2 521.2	μ6/Ц μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	521.2	μς/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	μց/Ն μg/Ն	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CIILOROPROPANE	524.2	μы, и μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	μы, υ μg/I,	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	μα/ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	μ _β μ _β /L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	μα/14 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	μ8/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	μ6/Ц μg/L	0.5	< 0.5	< 0.5	0.4J	< 0.5	
1,2-DICIILOROETHANE	524.2	րց/Լ	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	րծ/~ µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	րե/ հ µg/L	0.5	< 0.5	< 0.5	0.3J	< 0.5	
TRANS-1,2-DICHLOROETUENE	524.2	μ <u>α</u> /Ε μg/Ε	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	րել։ µg/Ն	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	μ <u>α</u> /L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2,2-DICILOROPROPANE	524.2	μα/ 5 μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICILOROPROPENE	524.2	μ8/~ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	μα/⊥ μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ETIIYLBENZENE	524.2	μ <u></u> g/Τ,	0,5	< 0.5	< 0.5	< 0.5	< 0.5	

13750 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Result							
Component Analyzed	Method	Unit	PQL	MW-17-4	MW-19-1	MW-19-2	MW-19-3					
				04-03962-5	04-03962-6	04-03962-7	04-03962-8					
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
METIIYLENE CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	<1	< 1	<1					
4-METHYL-2-PENTANONE (MIBK)	524.2	µg/L	10	< 10	< 10	< 10	< 10					
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
STYRENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,1,2-TETRACULOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
TETRACHLOROETHENE	524.2	µg/L	0.5	< 0.5	< 0.5	1.4	1.5					
TOLUENE	524. 2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	0.9	< 0.5	0.5	< 0.5					
TRICHLOROFLUOROMETHANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,3-TRICIILOROPROPANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
112TRICILORO-122TRIFLUOROETHANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5					
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5					

					Analysis Result	L
Component Analyzed	Method	Unit	PQL	MW-19-4 04-03962-9	MW-19-5 04-03962-10	TB-4-8/5/04 04-03962-11
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu\rm g/L}$	4	<4	< 4	-

13750 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

· · · · · · · · · · · · · · · · · · ·					Analysis Resu	<u> </u>
Component Analyzed	Method	Unit	PQL	MW-19-4	MW-19-5	TB-4-8/5/04
		0 1110	1 4.5	04-03962-9	04-03962-10	04-03962-11
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μ0/ μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μ3/- μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μ8/- μg/L	10	< 10	<10	< 10
CARBON TETRACHLORIDE	524.2	μα,- μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μ8/~ μg/L	0,5	< 0.5	< 0.5	< 0.5
CIILOROETHANE	524.2	μα/~ μg/L	0.5	< 0.5	< 0.5	< 0.5
CIILOROFORM	524.2	μg/L	0.5	0.7	< 0.5	< 0.5
CIILOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CIILOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0,5	< 0.5
4-CHLOROTOLUENE	524.2	րց/շ µg/Ն	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	րց/ե բց/ե	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μ8/~ μg/L	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μ8/ = μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μα/ – μg/ L	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROFTHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICIILOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICIILOROETHENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	µ8/≃ µg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICIILOROPROPENE	524.2	μ8/ μ8/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICILLOROPROPENE	524.2	μ8/~ μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μ8/∼ μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μ8/~ μg/L	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
		4010		1010	2.570	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-19-4 04-03962-9	MW-19-5 04-03962-10	TB-4-8/5/06 04-03962-11
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	< 10	< 10
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	2.3	4.2	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	0.6	< 0.5	< 0.5
1,2,3-TRICIILOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	μg/L	0,5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETIIANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	0.4J	0.4J	< 0.5
TRICILOROFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	μ <u></u> g/L	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	0.7	< 0.5	< 0.5

					Analysis Result	
Component Analyzed	Mcthod	Unit	PQL	MW-17-2 04-03962-3	MW-17-3 04-03962-4	MW-17-4 04-03962-5
CHROMIUM (VI)	7196	mg/I,	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$\mu g/L$	0.1	10	10.3	5.7

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

ecufully_subnyitted

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3962

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-19,MW-17/4-12812 For GEOFON, Inc.

APCL Service No: 04-3962

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc.	Sample ID APCL Sample ID
MW-17-4	04-03962-5
MW-17-3	04-03962-4
MW-17-2	04-03962-3
MW-19-5	04-03962-10
MW-19-4	04-03962-9
MW-19-3	04-03962-8
MW-19-2	04-03962-7
MW-19-1	04-03962-6
DUPE-2-3Q04	04-03962-1
EB-4-8/5/04	04-03962-2
TB-4-8/5/04	04-03962-11

2. Analytical Methodology

Samples are analyzed by EPA methods 524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova \bigvee Associate QA/QC Director Applied P & CH Laboratories

	GE		-0	N			CI	HAIN	V-OF-	CUS	бто	DY	RE	COR	D				LABORAT	ORY CO	PY	
. .	I N C D 22632 GOLDER DIAMOND BAR	R P O	R A	те о UITE 270	• FAX (9 <u>09</u>)	396-145	5	}	11) - /	7				_			_		117	7	
GEOFON LAB COO					110		DINATOR'S F		55	LABO	RATORY	SERVICE		LIBORATOR					EOMPANY NAM	EI		
PROJECT NAME	Butoner	PROJECT	LOCATION	<u>16</u> 7	<u>6661</u>	90				LABO	RATORY	PHONE		LABORATORY	<u>a C'</u> @s			RECIPIENT NAU	31	1		_
	20-3004	MW					_	128	2	909 909	590 RATORY				390	144	84	ADDRESS	For	d		_
J. J.	Jones	714	PHONE NUM	<u>5872</u>	9	900	<u> 7</u> 390	6. Kt	55	130	160	N M	ag	rolia	<u>, 6</u> u	e.	2	2632 (~	uden Sp	ringo I	u. <u>. Sta 27</u>	70
PROJECT ADDRES	5	CITY, STA	TE AND ZIP	CODE	0				JUIN	6170			∞ 0 		ורו			CITY, STATE AS	SD 21PCODE	÷	CA 9174	اير
PROJECT MANAG	er Corone Dr.	Pase	MANAL PR 9			PROJECT	<u>NAUY</u> anager Ke	lv l							5	77	~	pum		ω, ι		<u>م</u>
Tony	Ford	PHONE (<u>909</u>	396	7662	<u>900</u>	7 39	6.14	20		Rally Set	Ś	ž	X		//	/ /					
Litem 0	Sample Identifier		rya,		/ /	RE CE	Served to 1	cont Of	Level .		2) 2) 2) 2)		S A				/		Сотп	nents		
I I	-17-4		1 1	8.5.0	4 .	нu	5		Norma	11 -			<u>کا</u>		ſ						-	
	-17-3		ĶΓ		102/	Hu03	<u> </u>	<u></u>	.r- 	<u>' X</u>		X	X									
2					1048					X	X	K.	X									
3 MW	<u>- 1)- 2</u>		Ŧ	4	11/sT			¥		$ \times$	X	X	Х									
4				+	╄───				+	17							. <u> </u>					
5					•					イ					+							
									1/	_					+			<u>.</u>				
6									1.						1				-			
7										7.	<i>p</i> .	(/1	صم			╿┞		~~6	-4			_
															_		6	9	/			
8				╆						8.	\$.0	y 			+	ļ		2				
9																		-				
10					2							-			+	\vdash						
	ЕСТЕВВИ 574	нн		COURIE	R AND AIR BIL	L NUMBER.		1	1	_	<u> </u>					╹──┤	COOLER	TEMPERATURE	UPON RECEIPT			
	RELINQUISHED BY		_		/ RI	ECEIVED BY	·	0	DATE		NE 7.15					SAM	PLE'S CON	IDITION UPON 5	ECEIPT			
<u>e</u>	1 / END			7-68		un -	2	- 0 47	<u>rS-04</u> rS-04		हम	5					_					. <u> </u>
											'/	/					_					
																					· ·	
	Dis	tributio	n: Whit	te - Lab	oratory ()	Го be ге	sturned w	vith Ana	alytical	Report); Go	ldenr	rod - F	'roject F	ile; Y	ellow	- Ртој	ect Data M	1anager			_

,

	N	CHAIN-OF-C	CUSTODY R	ECORD	LABORATORY COPY
CEOFC INCORPORA 22632 GOLDEN SPRINGS DR., S DIAMOND BAR, CA 81765 • (909)	T E D UITE 270 396-7662 - FAX (909) 396-1455	Mu	2-19		0116
GEOFONN LAB COORDINATOR LAB COORDINATOR'S	PHONE LAS COORDIN	ATOR'S FAX 9 396 1455	LABORATORY SERVICE ID	LABORATORY CONTACT Kenny Chan	MAIL REPORT (COMPANY NAME) GEOFON
SPC 60 - 3004 MW-19		PAQUECT MUMBER	LABORATORY PHONE 909 590 1828	909 590 1498	ADDRESS
PROJECT CONTACT PROJECT PHONE MUN		396 1455	LABORATORY ADDRESS	grolia Que.	22632 Golden Springo D., Ste 270 (CITY. STATE AND ZIPCODE
BROKET MANAGER'S	na, CA US N	any SWATY	Chino, C	A 91710	Dignonal Bar. C.A 91765
Tony Ford MONE 909	396 7662 909	396 1455_	Analyses 10	\$ 3	
Sample Identifier	int Date time prese	ved scont level T.A.T	N/0/07	<u> </u>	Comments
1 MW-19-55 W	B.5.04 D713 Hul	4 IV Normal	XX		
2 MD-19-4	0787				
3 <u>HW-19-3</u>	0802				
4 MW-19-2	0821		XX		
5 MID-19-2	0848		XX		
6 Dupe - 2 - 3004			XX		
7 =B- 4- 9/5-104+0 =B-4-8/5/04	0887		XX		
8 TB-4-8/5/04 V	4 - HCI	2 + +	X		- 2968
9		7.9.2	. 7000		300
10		4	5.7	<u></u> ╃╍┼╾┾ <u>╹</u> ╞╼	
	COURLER AND AIR BILL NUMBER. RECEIVED BY	DATE	TIME		ER TEMPERATURE UPON RECEIPT
G. M. Jos	S. Aubias	95-0-1	12:15		· · · · · · · · · · · · · · · · · · ·
		//			
Distribution: Wh	ite - Laboratory (To be retu	med with Analytical R	eport); Goldenrod -	Project File; Yellow - Pro	oject Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4000 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

(1) Original analytical report.

(2) Original Chain of Custody.

(3) One diskette containing EDD deliverable.

(4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

Analysis of Water Samples

Service ID #: 801-044000	Received:	08/09/04
Collected by: JJ/MM	Extracted:	N/A
Collected on: 08/09/04	Tested:	08/09-12/04
	Reported:	08/16/04
Sample Description: Water fro	om MW-4/N	4 W~11
Project Description: 4-12812	JPL GW-	3Q04

					Analysis	Result		
Component Analyzed	Method	Unit	PQL	DUPE-3-3Q04		MW-4-1	MW-4-2	
				04-04000-1	04-04000-2	04-04000-3	04-04000-4	
Dilution Factor	÷			1	1	1	1	
PERCHLORATE	314.0	$_{\mu}g/L$	4	< 4	< 4	< 4	4.5	
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1	1	
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
-2-BUTANONE		μg/L		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1-J	~10	< 10	
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524. 2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	∢0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5	
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-3-3Q04	EB-5-8/9/04	MW-4-1	MW-4-2
				04-04000- 1	04-04000-2	04-04000-3	04-04000-4
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	1.7	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	1.1
TOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	2.8	0.6	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	1
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112 TRICHLORO-122 TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	1	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	7.2	0.7	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-4-3	MW-11-1	MW-11-2				
		<u>-</u>		04-04000-5	04-04000-6	04-04000-7				
Dilution Factor				1	1	1				
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4				
VOLATILE ORGANIC COMPOUNDS										
Dilution Factor				1	1	1				
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5				
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5				
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
2-BUTANONE	524.2	μg/L	10	< 10	< 10	<10				
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
4-CHLOROTOLUENE	524.2	μ <u>g</u> /L	-0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
2,2-DICHLOROPROPANE	524.2	μ8/2 μg/L	0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROPROPENE	524.2	μ8/ μg/L	0.5	< 0.5	< 0.5	< 0.5				
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5				
TRANS-1,3-DICHLOROPROPENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5				
ETHYLBENZENE	524.2	μg/L	0.5	3.7	< 0.5	< 0.5				

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-4-3	MW-11-	1 MW-11-2			
				04-04000-5	04-04000	-6 04-04000-7			
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu g}/L$	0.5	< 0.5	< 0.5	< 0.5			
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	< 1			
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10			
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
STYRENE	524.2	$\mu g/L$	0.5	0.5	< 0.5	< 0.5			
1,1,1,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TOLUENE	524.2	$\mu g/L$	0.5	0.6	< 0.5	< 0.5			
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,1,1-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,1,2-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROFLUOROMETHANE	524.2	μg/Ĺ	0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
O-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
				······					
				Analysi	s Result	 ;			
Component Analyzed Method Unit	PQI		MW-11-3	MW-		TB-5-8/9/04			
		C	4-04000-8	04-040	00-9	04-04000-10			
=									

314.0

 $_{\mu}g/L$

4

< 4

PERCHLORATE

< 4

-

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-11-3	MW-11-4	TB-5-8/9/04
				04-04000-8	04-04000-9	04-04000-10
VOLATILE ORGANIC COMPOUNDS				<u> </u>		
Dilution Factor				1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	<10	1J
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μ g /L	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
-1,2-DIBROMOETHANE (EDB)			0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μ8/ μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

						Analysis Re	esult	
Component Analyzed		Metho	d Unit	PQL	MW-11-3	MW-11-4	TB-5-8/9/04	
					04-04000-8	04-04000-9	04-04000 - 10	
P-ISOPROPYLTOLUEN	IE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORI	DE	524.2	։ _{µg/L}	0.5	< 0.5	< 0.5	< 0.5	
METHYL-T-BUTYL ET	THER (MTBE)	524.2	¦ μg/L	1	0.4J	<1	<1	
4-METHYL-2-PENTAN	ONE (MIBK)	524.2	e _µ g/L	10	< 10	< 10	< 10	
NAPHTHALENE		524.2	e _µ g/L	0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE		524.2	$\mu_{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	
STYRENE		524.2	¦ µg/L	0.5	0.3J	< 0.5	< 0.5	
1,1,1,2-TETRACHLORO	ETHANE	524.2	¦ μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLORO	ETHANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHE	NE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
TOLUENE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZ	ZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZ	ZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHA	ANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHA	ANE	524.2	μ g /L	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROM	1ETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPRO	PANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TR	IFLUOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBEN2	ZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZ	ZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE		524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	
· · ·					Anal	ysis Result	<u> </u>	
Component Analyzed	Method U	nit :	PQL	EB-5-8/9	9/04 N	IW-4-1	MW-4-2	
				04-0400	0-2 04-	04000-3	04-04000-4	
CHROMIUM (VI)	7196 m	g/L	0.01	< 0.01		< 0.01	0.0070J	
Dilution Factor				1		1.25	1	
CHROMIUM	200.8 µl	g/L	0.1	0.67		0.76	13.9	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result								
Component Analyzed	Method	Unit	\mathbf{PQL}	MW-4-3	MW-11-1	MW-11-2	MW-11-3						
				04-04000-5	04-04000-6	04-04000-7	04-04000-8						
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01						
Dilution Factor				1.25	1	1	1						
CHROMIUM	200.8	$_{\mu}g/L$	0.1	0.95	10.1	9.1	9.6						

PQL: Practical Quantitation Limit.MDL: Method Detection Limit.N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted, z_{1}

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4000

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-4/MW-11/4-12812

For GEOFON, Inc.

APCL Service No: 04-4000

1. Sample Identification

The sample identifications are listed in the following table:

 GEOFON, Inc. Sample ID	APCL Sample ID	
 MW-4-3	04-04000-5	
MW-4-2	04-04000-4	
MW-4-1	04-04000-3	
EB-5-8/9/04	04-04000-2	
TB-5-8/9/04	04-04000-10	
MW-11-4	04-04000-9	
MW-11-3	04-04000-8	
MW-11-2	04-04000-7	
MW-11-1	04-04000-6	
DUPE-3-3Q04	04-04000-1	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),
7196A (Chromium (VI)),
314.0 (Perchlorate, low level),
200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

Distrib	4. Juliater	A. A. Jour	RELINQUISHED BY	SAMPLES COLLECTED BY S S + HH	10	9	8	7	6	5 TB-5-819104	4 <u>=B-S-8/9/04</u>	3 HD-4-2	2 1412-4-2	1 HW-4-3	Item C Sample Identifier	rd P	55 100 100 100 100 100 100 100 100 100 1		12-390-1	SCORE BULLING 9		Gno
ution: White - Laboratory (To		4. Valley		COURIER AND AIR BILL NUMBER.	 					+ + +	1 0739	8140	0123)00 H H	Mattint Date Little	1299C 0		7149208729		409 396 7662 4	1 N C O R P O R A T E D 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	
be returned with Analytical Rep	1-4-4	A Q-9-04	RECEIVED BY DATE	M@ER.			8.9 04	9, 1.		Hel 2 4 4				W	These the of Collins		US Navy SWATY	909 396 1455 1	PROJECT NUMBER 4-12812	409 3961455	6-1455 MU-4	CHAIN-OF-CUSTODY
Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager	AZ i du	\$5.01		cc											1000 - 10		Chino, CA 9/710	13760 Magadia Aur.	909 590 1828 409 590 1498	LABORATORY SERVICE ID LABORATORY CONTACT		USTODY RECORD
roject Data Manager			SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT											Comments	4000	Wignered Bar, C.A 91765	22632 Coobler Springe Mr. 22	TONY Ford	630FDH	8110	LABORATORY COPY

Distribution:	7. Bullath	a. p. gove	elinquished B		10	2	8	7	6	╁	4 MW-11-7	M13-11-2	2 Hu-11-3	1 Hu-11-4 1	Ite Sample Identifier	0	TONLY FOUR	K Owner M	PROJECT ADDRESS CITY, STATE AND ZIPCODE	PROJEC	7-3004 BONG	SCORDINATOR SCORDINATOR SCORDINATOR SCORDINATOR SCORDINATOR	22632 GOLDEN SPRINGS D DIAMOND BAR, CA 91765 •		
White - Laboratory (To be returned with Analytical Report);		Cr. (24 the Day of a	RECEIVED BY	COURLER AND AIR BILL NUMBER:						H	4.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		B. 7.07 0904 Histor 2	Dare Line dress # 01	and the con	396 7662 909 396	andera, CA US Navy JHI		ng Ang 291,	MWD-11 4-12812	6	22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455		
Goldenre	╉╋	10 ml 12,24					8.9.04							No. 12	× 5 8 W				CITY. STATE AND ZIPCOD	0	281 Obstantion House		LABORATORY SERVICE ID LABORATORY CONTACT		CHAIN-OF-CUSTODY RECORD
d - Project File; Yellow - Project Data Manager			SAMPLE S CONDITION SECTIFY	COOLER TEMPERATURE UPON RECEIPT												Comments	4000	Man Deautor				C=OF	MAIL REPOR	6110	LABORATORY COPY

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4017 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

(1) Original analytical report.

(2) Original Chain of Custody.

(3) One diskette containing EDD deliverable.

(4) One_original_Level_C_Data_Package_Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-044017 Collected by: JJ/MM Collected on: 08/10/04 Received: 08/10/04 Extracted: N/A Tested: 08/10-12/04 Reported: 08/17/04 m MW-23/MW-24

Sample Description: Water from MW-23/MW-24 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

Component Analyzed	Metho	od U	nit	PQL		5-8/10/ 04017-1	04 MV	sis Result W-23-1)4017-2	MW-23-2 04-04017-3
Dilution Factor PERCHLORATE	314.() μί	g/L	4		1 < 4		1 4.4	1 4.9
Component Analyzed	Method	Unit	PQL		V-23-3 04017-4			Result MW-24-2 04-04017-7	MW-24-3 04-04017-8
Dilution Factor PERCHLORATE	314.0	μg/L	4				100 ,170	1 99.7	1 <4
Component Analyzed		Method	Unit	PQL	EB-6-8/ 04-040	•	Analy: MW-23-1 04-04017-2	sis Result MW-23-2 04-04017-3	
CHROMIUM (VI)		7196	mg/L	0.01	< 0.0	01	< 0.01	< 0.01	< 0.01
Dilution Factor			-	_	1	_	1	1	1
CHROMIUM		200.8	$\mu g/L$	0.1	0.8	(15.2	14.1	11.2
VOLATILE ORGANIC CO	MPOUND	s			-			_	
Dilution Factor BENZENE		504.0	_ / T	0 5	1	-	1	1	1
BROMOBENZENE		$524.2 \\ 524.2$	μg/L α/I	0.5	< 0.		< 0.5	< 0.5	< 0.5
BROMOCHLOROMET	HANF	524.2 524.2	$\mu g/L$	$0.5 \\ 0.5$	< 0.		< 0.5	< 0.5	< 0.5
BROMODICHLOROME		524.2 524.2	$\mu g/L \ \mu g/L$	0.5	< 0. < 0.		< 0.5	< 0.5	< 0.5
BROMOFORM		524.2 524.2	μg/L μg/L	0.5	< 0. < 0.		< 0.5 < 0.5	< 0.5	< 0.5
BROMOMETHANE		524.2 524.2	μg/L μg/L	0.5	< 0. < 0.		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
N-BUTYLBENZENE		524.2	μ8/L μg/L	0.5	< 0.		< 0.5	< 0.5 < 0.5	< 0.5
SEC-BUTYLBENZENE		524.2	μ6/L μg/L	0.5	< 0.		< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZEN		524.2	$\mu g/L$	0.5	< 0.		< 0.5	< 0.5	< 0.5
2-BUTANONE		524.2	μg/L	10	< 10		<10	< 10	<10
CARBON TETRACHLO	ORIDE	524.2	$\mu g/L$	0.5	< 0.		< 0.5	< 0.5	< 0.5
CHLOROBENZENE		524.2	μg/L	0.5	< 0.		< 0.5	< 0.5	< 0.5
CHLORODIBROMOME	THANE	524.2	μg/L	0.5	< 0.		< 0.5	< 0.5	< 0.5
CHLOROETHANE		524.2	$\mu g/L$	0.5	< 0.		< 0.5	< 0.5	< 0.5
CHLOROFORM		524.2	$\mu g/L$	0.5	< 0		< 0.5	< 0.5	< 0.5
CHLOROMETHANE		524.2	$\mu g/L$	0.5	< 0.	5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE		524.2	$\mu g/L$	0.5	< 0.	5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysi			
Component Analyzed	Method	Unit	PQL	EB-6-8/10/04		MW-23-2	MW-23-3	
·				04-04017-1	04-04017-2	04-04017-3	04-04017-4	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	0.3J	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	μ g/ L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$\mu g/L$	0.5	0.6	< 0.5	< 0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	< 1	< 1	<1	
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	<10	< 10	< 10	<10	
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	μg/L	0.5	< 0.5	0.8	< 0.5	< 0.5	
TOLUENE	524.2	$\mu g/L$	0.5	1.0	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	μg/L	0.5	< 0.5	0.8	< 0.5	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$\mu g/L$	0.5	0.4 J	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	$\mu g/L$	0.5	2.6	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-23-4 04-04017-5	MW-24-1 04-04017-6	MW-24-2 04-04017-7
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor		0,		1	1	1
CHROMIUM	200.8	$\mu g/L$	0.1	7.9	11.2	9.2
VOLATILE ORGANIC COMPOUNDS		F 3,				-
Dilution Factor				1	1	1
BENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	-	< 0.5	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	-	< 10	< 10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	-	16.7	4.1
CHLOROBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
CHLOROETHANE	524.2	μ8/- μg/L	0.5	-	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	-	5.9	1.7
CHLOROMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	-	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	-	< 10	< 10
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μα/- μg/L	0.5	_	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μ8/- μg/L	0.5	_	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	-	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-23-4	MW-24-1	MW-24-2
				04-04017-5	04-04017-6	04-04017-7
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	-	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu g/L}$	0.5	-	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	-	< 1	<1
NAPHTHALENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	-	1.7	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
TRICHLOROETHENE	524.2	μg/L	0.5	-	2.4	0.7
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu g/L}$	0.5	-	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	-	< 0.5	< 0.5

					Analysis Resul	lt
Component Analyzed	Method	Unit	PQL	MW-24-3 04-04017-8	MW-24-4 04-04017-9	TB-6-8/10/04 04-04017-10
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$\mu g/L$	0.1	7.3	6.2	-

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-24-3	MW-24-4	TB-6-8/10/04
				04-04017-8	04-04017-9	04-04017-10
VOLATILE ORGANIC COMPOUNDS						<u>_</u>
Dilution Factor				1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
BROMOMETHANE	524.2	μg/L	0.5	< 0.5	-	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
TERT-BUTYLBENZENE	524.2	μ g /L	0.5	< 0.5	-	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	-	0.9J
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	-	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
-1,2-DIBROMOETHANE (EDB)	524.2	μg/Ľ	0.5	< 0.5	_	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μ g /L	0.5	< 0.5	_	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	-	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μ g /L	0.5	< 0.5	-	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	-	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-24-3 04-04017-8	MW-24-4 04-04017-9	TB-6-8/10/04 04-04017-10
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	-	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	-	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	µg/L	0.5	< 0.5	-	< 0.5
- 1,2,4-TRIMETHYLBENZENE	524.2			< 0.5		< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	-	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	-	< 0.5

PQL: Practical Quantitation Limit.MDL: Method Detection Limit.N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

espectfully_subm minit

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4017

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-23/MW-24/4-12812 For GEOFON, Inc.

APCL Service No: 04-4017

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc.	Sample ID APCL Sample ID	- ,
MW-23-4	04-04017-5	
MW-23-3	04-04017-4	
MW-23-2	04-04017-3	
MW-23-1	04-04017-2	
EB-6-8/10/04	04-04017-1	
TB-6-8/10/04	04-04017-10	
MW-24-4	04-04017-9	
MW-24-3	04-04017-8	
MW-24-2	04-04017-7	
MW-24-1	04-04017-6	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.235 ug/L and 0.213 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

Distribution: Whi	A. V. Klowy			10	Ŷ	8	7	6 TB-6-810-04	5 28-6-8/10/04	4 Hw-23-2	3 Mb-93-2	2 ମାଦ୍ୟ- କଟ୍ଟ-3	1 Mw-23-4 W	lentifier	ANAGER PROJECT	4800 Oak Grow U. Pasadena.	Jones	0-3004	Scott Burney 909 396	22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	GEOFC
Distribution: White - Laboratory (To be returned with Analytical Report);	Sailing Idayas 1 81004 1	RECEIVED BY DATE				Ø. 0		4 - HCI 2 4 4 1		₀ ,5 5 ≯	0.805 10 X	01 Here 5	103 Henry 2 TT	e rittle greserved contravel	967662 909 396 1455	CA US Navy SWITH	1909 396 1455	PROJECT NUMBER	11/2013 FAX	T E D SUITE 270 396-7662 • FAX (909) 396-1455	DN CHAIN-OF-CUSTODY
ort); Goldenrod - Project File; Yellow - Project Data Manager		TIME SAMPLE'S CONDI									XXXX		XX	20	A A A A A A A A A A A A A A A A A A A	Chino, CA 91210	Magnelia Aur.	- 8661	HORATORY SERVICE ID LABORATORY CONTACT	(J)	USTODY RECORD
ot Data Manager		SAMPLE'S CONDITION UPON RECEIPT	EMPERATI JAE UDON RECEIDT								I MSD			Comments		LIDIMUTER AND ZIRCODE LiDIMUTER of Bal, C.A. 91765	22632 Corben Springe Mr., Str. 270	Tony Ford	GEOFON	0120	LABORATORY COPY

Distribution:	in a finn			4	10	6	8	7	6	5	4 HW-24-7	3 7-2-24-2	2 1100 61 0	24-2	M A-42-54 1	Iten Sample Identifier		NAGER PROJECT	4800 Dar Guarda Pasar	S-NO	-3004	SCIONA BUNNEY 909 394	22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662	GEOF
Distribution: White - Laboratory (To be returned with Analytical Report);			RECEIVED BY	COURTER AND AIR BILL NUMBER							10,	1029	1000 HUN3 J	- e Ha	B. p. of off Stro Varia	ine greser to	·+ / / / / / / / /	109,296,762,909,296	ena CA	60b 62 6 8		Note 2 900	- FAX (909) ;	CHA
Goldenrod -		يد ج	DATE TIME				40.018	· 0- 6/00			$4 + \times \times \times \times$				Z	and the second and a second	10 0 0 0	``	0	396 1455 13760 Magnilia due.	5	SS HORATORY SERVICE ID HADALTORY CONTA	-	CHAIN-OF-CUSTODY RECORD
Project File; Yellow - Project Data Manager			SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT			AUL				מטא ואא	-1				Comments			Wignered Bar, CA 91745	22632 Conterno Spring U., Str 220		Chan 650 FON	0161	

AMENDED 04-4017

C

10/4/04

נ

2

.

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-23/MW-24/4-12812 For GEOFON, Inc.

APCL Service No: 04-4017

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample	ID APCL Sample ID
MW-23-4	04-04017-5
MW-23-3	04-04017-4
MW-23-2	04-04017-3
MW-23-1	04-04017-2
EB-6-8/10/04	04-04017-1
TB-6-8/10/04	04-04017-10
MW-24-4	04-04017-9
MW-24-3	04-04017-8
MW-24-2	04-04017-7
MW-24-1	04-04017-6

2. Analytical Methodology

Samples are analyzed by EPA methods 524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.235 ug/L and 0.213 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

(2) Perchlorate, 314.0:

Perchlorate recoveries in the MS/MSD spiked on the sample MW-24-1 were much higher than upper control limits, due to high level of Perchlorate in the parent sample. The recoveries in the LCS/LCSD were within

control limits.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova // (Associate QA/QC Director Applied P & CH Laboratories

FORM-3

Applied P & CH Laboratories Matrix Spike/Matrix Spike Duplicate Recovery for Method 314.0

Client Name: Case No:	GEOFON, Inc.	Contract No: SAS No:		Lab Code: Service ID:	APCL 44017
Project ID:	JPL GW-3Q04	Project No: Batch No:	4-12812 04W3576	Sample Matrix:	Water
MS Filename:	-	Date Analyzed:	081004	Time Analyzed:	19:13
MSD Filename: MS Sample No:		Date Analyzed: Sample Lab ID:		Time Analyzed:	19:32
mo bample no.	141 44 - 2 - 1	Dample Dab ID.	04-4011-0		

Spiked		Spike	Concent	ration	MS	QC Limit, %
Components	Unit	Added	Unspiked	MS	Rec% #	REC
PERCHLORATE	$_{\mu \mathrm{g/L}}$	25	2170	2260	360 *	75-125
# of Out-of-control					1	

Spiked		Spike	MSD	MSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
PERCHLORATE	$_{\mu}{ m g/L}$	25	2310	560 *	2	20 75-125
# of Out-of-control				1	0	

Column to be used to flag recovery and RPD values:

* - Values outside of contract required QC Limits

D – Spiked components diluted out

Comments:

44017 File: FORM-3 10/04/2004 10:33 [p2]

page 996

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4031 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

(1) Original analytical report.

- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

Analysis of Water Samples

Service ID #: 801-044031	Received:	08/11/04
Collected by: JJ/TM	Extracted:	N/A
Collected on: 08/11/04	Tested:	08/11-23/04
	Reported:	08/27/04
Sample Description: Water fro	om MW-3/1	4W-12
Project Description: 4-12812	JPL-GW-	3Q04

				Analysis Result				
Component Analyzed	Method	Unit	PQL	DUPE-4-3Q04	EB-7-8/11/04	MW-3-2	MW-3-3	
				04-04031-1	04-04031-2	04-04031-3	04-04031-4	
Dilution Factor				1	1	1	1	
PERCHLORATE	314.0	$\mu g/L$	4	< 4	< 4	12.5	< 4	
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1	1	
BENZENE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10	
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	μg/L	-0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CARBON TETRACHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	0.8	< 0.5	
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis	Analysis Result		
Component Analyzed	Method	Unit	PQL	DUPE-4-3Q04	EB-7-8/11/04	MW-3-2	MW-3-3	
				04-04031-1	04-04031-2	04-04031-3	04-04031-4	
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROPROPANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROPROPANE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$\mu g/L$	0.5	0.7	< 0.5	< 0.5	0.6	
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	μ g/ L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}g/L$	1	0.3J	<1	<1	0.4J	
4-METHYL-2-PENTANONE (MIBK)	524.2	µg/L	10	< 10	< 10	<10	< 10	
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0,5	
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TOLUENE	524.2	μg/L	0.5	0.4J	< 0.5	< 0.5	0.3J	
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	0.4J	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	0.8	< 0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-3-4	MW-12-1	MW-12-2	MW-12-3		
				04-04031-5	04-04031-6	04-04031-7	04-04031-8		
Dilution Factor				1	1	1	1		
PERCHLORATE	314.0	$_{\mu}g/L$	4	< 4	< 4	<4	< 4		
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1	1		
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10	< 10		
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.5J	< 0.5		
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	2.4		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$\frac{\mu g}{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-3-4	MW-12-1	MW-12-2	MW-12-3
				04-04031-5	04-04031-6	04-04031-7	04-04031-8
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}g/L$	1	<1	<1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}g/L$	10	<10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
					Analysis Re	esult	
Component Analyzed Method U	nit l	PQL	M	W-12-4	MW-12-5		8/11/04
		-		04031-9	04-04031-10		031-11
Dilution Factor	r			1	1		1

314.0

 $_{\mu}g/L$

4

3.2J

PERCHLORATE

-

1.8J

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-12-4	MW-12-5	TB-7-8/11/04		
				04-04031-9	04-04031-10	04-04031-11		
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1		
BENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	1J		
CARBON TETRACHLORIDE	524.2	μg/L	0.5	3.0	1	< 0.5		
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	μg/L	0.5	0.8	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
	524.2		-0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
HEXACHLOROBUTADIENE	524.2	μ8/ μg/L	0.5	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

							Analysis Resu	dt
Component Analyzed			Method	Unit	\mathbf{PQL}	MW-12-4	MW-12-5	TB-7-8/11/04
						04-04031-9	04-04031-10	04-04031-11
P-ISOPROPYLTOL	UENE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHL	ORIDE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYI	L ETHER (N	MTBE)	524.2	$_{\mu}g/L$	1	<1	<1	<1
4-METHYL-2-PENT	ANONE (M	IBK)	524.2	$_{\mu}\mathrm{g/L}$	10	<10	< 10	< 10
NAPHTHALENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZEN	νE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLO	DROETHAN	٧E	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLO	OROETHAN	١E	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROET	HENE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE			524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROB	ENZENE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROB	ENZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROE	THANE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROE	THANE		524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHE	NE		524.2	$_{\mu}g/L$	0.5	0.6	< 0.5	< 0.5
TRICHLOROFLUOI	ROMETHAL	NE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROP	ROPANE		524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLORO-1	,2,2-TRIFL	UORO	524.2	$_{\mu g}/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLB	ENZENE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLB	ENZENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE			524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
						*		
Component Analyzed	Method	Unit	PQL	- פרוות	10004	Analysis		1411 0 0
Component Analyzed	Method	OUL	гĄг	DUPE-4	-	EB-7-8/11/04	MW-3-2	MW-3-3
	7100	/r	0.01	04-040		04-04031-2	04-04031-3	04-04031-4
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.1	UT I	< 0.01	< 0.01	< 0.01
CHROMIUM	900 9	с./Т	0.1	1	6	1	1	1
	200.8	$\mu g/L$	0.1	7.4	t	0.29	8.8	7.2

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

		Analys	Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-3-4	MW-12-1	MW-12-2	MW-12-3
				04-04031-5	04-04031-6	04-04031-7	04-04031-8
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	6.6	11.7	12.0	6.5

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully_submit ted, Dominic Lau

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4031

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL-GW-3Q04/MW-3/MW-12/4-12812

For GEOFON, Inc.

APCL Service No: 04-4031

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample II	O APCL Sample ID
	04-04031-10
MW-12-4	04-04031-9
MW-12-3	04-04031-8
MW-12-2	04-04031-7
MW-12-1	04-04031-6
MW-3-4	04-04031-5
MW-3-3	04-04031-4
MW-3-2	04-04031-3
DUPE-4-3Q04	04-04031-1
TB-7-8/11/04	04-04031-11
EB-7-8/11/04	04-04031-2

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.152 ug/L to 0.235 ug/L was detected in the CCBs associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova V Associate QA/QC Director Applied P & CH Laboratories

. 1 control h	a prime a	RELINQUISHED BY		10	0	8	7	9 <u>28-7-811</u>	s TB-7 -8/11	4 Jupe-4-3004	3 MID-3-2	2 MW-3-3	1 MW-3-4	Iter Sample Identifier	0	PROJECT MANAGER	4800 Dal Grover	J. D. Jones		GEOFON'LAB COORDINATOR		
	A MARK		HIPTH COURLER					0/80 A A 101			Cr.90		12	Maitin Date		PROTECT MANAGER'S	CITY, STATE AND ZIPCODE	PROJECT PHONE NUMBER		409 396 766 2	- N C C 日 P C P A T E D 22632 GOLDEN SPRINGS DR. SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	
0/11	all tal 10 and	RECEIVED BY DATE	AND AIR BILL NUMBER.		-	D 10.0		 A T S 2	- Hcl 2	• ∀-	× ×			Rice & SCO CLE	er w lo	909 396 1455	US Nang SWITY	9093961455-	PROJECT NUMBER	4093961455	909) 396-1455 MW-	
	and a my	TIME SAMPL									XXXX		XX		NIN O VO		Chine, CA 9170	13740 Magnolia Auc.	409 590 1828 909 590 1898	LABORATORY SERVICE ID LABORATORY CONTACT		
		SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT		I	1031								Comments			UCITY, STATE AND ZIPCODE	22632 Colden Springs Jr., Str. 270	TONY Ford	MAIL REPORT (COMPANY NAME)	0122	

Dis	almaken by	Alle Clang	RÉLINQUISHED BY	SAMPLES COLLECTED BY JS 14	10	و ا	~	7	6	5 Mw-12-7	4 MW0-12-2	3 Hw-12-3	2 HW-12-4	1 MW-12-5	Leen CJ Sample Identifier	TONY FOLD	PROJECT ADDRESS 4800 Call. Colore M.	PROJECT CONTACT	SPL COLD - 3904	SCOLL BUINNEL	22632 GOLDET DIAMOND BAP	G
Distribution: White - Laboratory (T		Villen AL		COURJER AND AIR BILL NUMBER							1. Josh	1,01	6340	204	Matrix Date Little	PHONE 909 396766	Pasadena, CA		-	459 396 7662	INСОЯРСЯАТЕС 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	
Laboratory (To be returned with Analytical Report);	ants	Ham 2 Mar		NUMBER.		8. II. oy	Q. 0. Q.						↓	T 7	the great and contract in the	109 39	WS Navy SWATY	909 396 1455	PROJECT NUMBER	9093961455	396-1455	CHAIN-OF-(
Goldenrod - Project File;	19/0	2011	TIME							XXXX	X X X X X X X X	XXXX	××	× ×		/ 1//~	Chino, CA GIJIC		469 590 1828 409 590 M98	LABORATORY SERVICE ID LABORATORY CONTACT	-12	CHAIN-OF-CUSTODY RECORD
Yellow - Project Data Manager			SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT								A03 #			Comments			122632 (0	· ·		0/23	LABORATORY COPY

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4044 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-044044 Received: 08/12/04 Collected by: JJ/MM Extracted: N/A Collected on: 08/12/04 Tested: 08/12-26/04 Reported: 08/27/04 Sample Description: Water from MW-22 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

				Analysis	Result
Component Analyzed	Method	Unit	PQL	EB-8-8/12/04 04-04044-1	MW-22-1 04-04044-2
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01
Dilution Factor				1	1.25
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.23	7.3
Dilution Factor		, .		1	1
PERCHLORATE	314.0	$\mu g/L$	4	< 4	2.6J
VOLATILE ORGANIC COMPOUNDS		•			
Dilution Factor				1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \rm g}/{ m L}$	0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

=

				Analysis	s Result
Component Analyzed	Method	Unit	\mathbf{PQL}	EB-8-8/12/04	MW-22-1
				04-04044-1	04-04044-2
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	0.5	0.7
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.9
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.3J
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
112-TRICHLORO122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-22-2 04-04044-3	MW-22-3 04-04044-4	TB-8-8/12/04 04-04044-5			
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-			
Dilution Factor				1	1	1			
CHROMIUM	200.8	$\mu g/L$	0.1	9.8	10.0	-			
Dilution Factor				1	1	1			
PERCHLORATE	314.0	$\mu g/L$	4	2.8 J	< 4	-			
VOLATILE ORGANIC COMPOUNDS		•							
Dilution Factor				1	1	1			
BENZENE	524.2	µg/Ľ	0.5	< 0.5	< 0.5	< 0.5			
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	1 J			
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2,2-DICHLOROPROPANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

=

APCL Analytical Report

		<u></u>			Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-22-2	MW-22-3	TB-8-8/12/04
				04-04044-3	04-04044-4	04-04044-5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu g/L}$	0.5	0.8	0.7	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu \rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu { m g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

ectfully submitted, Dominī ъu

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4044

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 Case Narrative

Project: JPL GW-3Q04/MW-22/4-12812 For GEOFON, Inc.

APCL Service No: 04-4044

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-22-3	04-04044-4
MW-22-2	04-04044-3
MW-22-1	04-04044-2
EB-8-8/12/04	04-04044-1
TB-8-8/12/04	04-04044-5

2. Analytical Methodology

Samples are analyzed by EPA methods 524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium in the amount of 0.23 ug/L was also detected in the sample EB-8-8/12/04. Chromium was detected in other field samples in the amounts significantly exceeding the reporting limit. "I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

F FOFON	CHAIN-OF-0	CUSTODY RECORD	LABORATORY COPY
GEOFON INCORPORATED 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (90)) 396-1455 MW-2		0124
GEOFON'S LAB COORDINATOR Scort Burmus 909 396 7662	LAB COORDINATOR'S FAX 9093961455	LABORATORY SERVICE ID LABORATORY CONTACT	D. CEOFON
TPL GW-3001 MW-22	PROJECT NUMBER	LABORATORY PHONE 909 590 1828 909 590 144 LABORATORY ADDRESS	ADDRESS C Sta
J. D. Joneo 714920 8729	PROJECT FAX 909 396 1455	Uzara Manualia Nie	22632 Conden Springo Dr. 270
PROJECT ADDRESS <u>4800 Dalk Grove D.</u> <u>PROJECT MANAGER</u> PROJECT MANAGER PROJECT MANAGER	US NOWY SWATE		CITY. STATE AND ZIPCODE 10 Diamond Bar, CA 91765
Tony Ford PHONE 909 396 766	2 909 396 1455	ANDINGES DE CONTRACTOR	
Sample Identifier	the preserved a Cont Clevel A		Comments
1 MW-22-3 W B.12.019	Hund 10 III Nornel	XXXX	MSIMSD
2 HW-22-2	5	XXXX	
3 MLD-22:7. V 8833			
4 = <u>8-8-8/12/04</u> 8°		XXXX	4049
5 TB-8-8/12/04 V -	Hel 2 4 4	X	
6			
7			
	8.12.1		
9			
10 SAMPLES COLLECTED BY: JJHML COURIER AND AIR	BILL NUMBER: RECEIVED BY DATE		COOLER TEMPERATURE UPON RECEIPT MPLE'S CONDITION UPON RECEIPT
RELINQUISHED BY	R1209	9:45	
Distribution: White - Laboratory	(To be returned with Analytical	Report); Goldenrod - Project File; Yellow	v - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710
Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4085 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

Analysis of Water Samples

APCL Analytical Report

Service ID #: 801-044085 Collected by: JJ/MM Collected on: 08/16/04 Received: 08/16/04 Extracted: N/A Tested: 08/16-26/04 Reported: 08/27/04

Sample Description: Water Project Description: 4-12812

JPL GW-3Q04

				Analysis Result								
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04 04-04085-1	MW-5 04-04085-2	MW-6 04-04085-3	MW-16 04-04085-5					
Dilution Factor		-		1	1	1	10					
PERCHLORATE	314.0	$\mu g/L$	4	< 4	< 4	3.2J	833					

				I	Analysis Result	
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04 04-04085-1	MW-5 04-04085-2	MW-6 04-04085-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$\mu g/L$	0.1	11.6	10.9	28.4
VOLATILE ORGANIC COMPOUNDS		•				
Dilution Factor				1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10 .	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				A	nalysis Resul	=
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04	MW-5	MW-6
				04-04085-1	04-04085-2	04-04085-3
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.6
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	< 1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	1.1
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	0.4J
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	µg/L	0.5	< 0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-15 04-04085-4	MW-16 04-04085-5	TB-9-8/16/04 04-04085-6			
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01				
Dilution Factor				1	1	1			
CHROMIUM	200.8	$\mu g/L$	0.1	12.6	9.1	-			
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5			
BROMOBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
BROMOFORM	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
BROMOMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
2-BUTANONE	524.2	$\mu g/L$	10	-	< 10	< 10			
CARBON TETRACHLORIDE	524.2	μg/L	0.5	-	4.0	< 0.5			
CHLOROBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
CHLOROETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
CHLOROFORM	524.2	$\mu g/L$	0.5	-	5.1	< 0.5			
CHLOROMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
2-CHLOROTOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
4-CHLOROTOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5			
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	-	< 0.5	< 0.5			
DIBROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,2-DICHLOROBENZENE	524.2	μ8/ – μg/L	0.5	-	< 0.5	< 0.5			
1,3-DICHLOROBENZENE	524.2	μ8/ μg/L	0.5	-	< 0.5	< 0.5			
1,4-DICHLOROBENZENE	524.2	μs/ μg/L	0.5	-	< 0.5	< 0.5			
DICHLORODIFLUOROMETHANE	524.2	μ8/2 μg/L	0.5	-	< 0.5	< 0.5			
1,1-DICHLOROETHANE	524.2	μ8/2 μg/L	0.5	-	< 0.5	< 0.5			
1,2-DICHLOROETHANE	524.2	μς/L	0.5	-	< 0.5	< 0.5			
1,1-DICHLOROETHENE	524.2	μς/L	0.5	_	1.3	< 0.5			
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5			
TRANS-1,2-DICHLOROETHENE	524.2 524.2	•	0.5	-					
1,2-DICHLOROPROPANE	524.2 524.2	μg/L α/L	0.5	-	< 0.5 < 0.5	< 0.5			
1,3-DICHLOROPROPANE	524.2 524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5			
2,2-DICHLOROPROPANE	524.2 524.2	$\mu g/L$	0.5	-		< 0.5			
1,1-DICHLOROPROPENE	524.2 524.2	µg/Ĺ σ/Ι		-	< 0.5	< 0.5			
CIS-1,3-DICHLOROPROPENE	524.2 524.2	μg/L α/Ι	0.5	-	< 0.5	< 0.5			
		$\mu g/L$	0.5	-	< 0.5	< 0.5			
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5			

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result						
Component Analyzed	Method	Unit	PQL	MW-15 04-04085-4	MW-16 04-04085-5	TB-9-8/16/04 04-04085-6				
				04-04065-4						
ETHYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5				
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
METHYLENE CHLORIDE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5				
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	1	-	< 1	<1				
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	-	< 10	< 10				
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5				
N-PROPYLBENZENE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5				
STYRENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	0.5	< 0.5				
TOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5				
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5				
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5				
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	-	1.0	< 0.5				
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	-	< 0.5	< 0.5				
O-XYLENE	524.2	μg/L	0.5	-	< 0.5	< 0.5				
M/P-XYLENE	524.2	$_{\mu}g/L$	0.5	-	< 0.5	< 0.5				

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

ited), br Lau

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4085

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/4-12812

For GEOFON, Inc.

APCL Service No: 04-4085

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-5	04-04085-2
MW-6	04-04085-3
MW-16	04-04085-5
MW-15	04-04085-4
TB-9-8/16/04	04-04085-6
DUPE-5-3Q04	04-04085-1

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium was detected in the field samples in the amounts significantly exceeding the reporting limit.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

	ON	C	HAIN-OF-O	CUSTODY F	RECORD	LABORATORY COPY
IN CORPOR 22632 GOLDEN SPRINGS DIAMOND BAR, CA 91765	DR., SUITE 270	9) 396-1455	Shal	low h)ello	0125
GEOFON'S LAB COORDINATOR LAB COORDI	NATOR'S PHONE	LAB COORDINATOR'S F		LABORATORY SERVICE ID		MAIL REPORT (COMPANY NAME) GEOFON
PROJECT NAME: JPL (ob) - 3004 MW.	CATION		ECT NUMBER /28/2	LABORATORY PHONE 909.590 1828	Kenny Chan- 909 590 1498	RECIPIENT NAME FORD
	ONE NUMBER 317 714 9208	PROJECT FAX 29 909 39		LABORATORY ADDRESS	ignolia Auc.	22632 Coolden Springs St., Str 270
4800 Dar Geove be Pasa	and zipcode	CLIENT US Nauy PROJECT MANAGERS	SUDER	CITY. STATE AND ZIPCODE		Ligning Bar, CA 91765
PROTECT MA		909390	6 14/55-	N75E3 NO. 6		
Sample Identifier	/ /	ine preserved	Cont Level A	$ \sqrt[n]{0}/\sqrt[n]{0}$	ST P	Comments
1 HW-5	W 8.140 0750	Hei Hues 5 None	3 Norma			
2 HID-6	318		IL	XXXX		
3 HW-130	1212	· +	3	$\times \times \times \rangle$		
4 MW-15	0919	+ 124			X	S/MSD
5 TB- 9 - 8/14 104	-	HC1 2		X		· · · · · · · · · · · · · · · · · · ·
6 Dipe - 5 -3Q04	4 4 -	H4 5	$\forall \forall$	XXXX	X -	
7						
8			q. p.	Jone	4	085
9			8.16.	64		
10		1	<u> </u>			
SAMPLES COLLECTED BY JJ+HM RELINQUISHED BY		RECEIVED BY		TIME, 10		OLER TEMPERATURE UPON RECEIPT
Alim WTV		hu -	8160	1515		
Distribution:	White - Laboratory	(To be returned v	with Analytical R	leport); Goldenrod	- Project File; Yellow - P	roject Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4096 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

(1) Original analytical report.

- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova \bigvee \sum Associate QA/QC Director Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford 22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765 Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-044096 Collected by: JJ/MM/TM Collected on: 08/17/04

Received: 08/17/04 Extracted: N/A Tested: 08/17-26/04 Reported: 08/27/04

Sample Description: Water Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

				Analysis	Result MW-8 04-04096-2 < 0.01 1 9.8 1 9.4 1 < 0.5 <
Component Analyzed	Method	Unit	PQL	DUPE-6-3Q04 04-04096-1	-
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01
Dilution Factor				1	1
CHROMIUM	200.8	$\mu g/L$	0.1	23.8	9.8
Dilution Factor		•		1	1
PERCHLORATE	314.0	$\mu g/L$	4	25.5	9.4
VOLATILE ORGANIC COMPOUNDS					
Dilution Factor				1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	
CHLOROFORM	524.2	μg/L	0.5	1.4	
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	μ0/ μg/L	0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μ8/ μg/L	0.5	1	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analysis	Result
Component Analyzed	Method	Unit	PQL	DUPE-6-3Q04	MW-8
				04-04096-1	
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	
METHYLENE CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	1.8	< 0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	16.6	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	
VINYL CHLORIDE	524.2	μg/L	0.5	< 0.5	
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Result			
Component Analyzed	Method	Unit	PQL	MW-10 04-04096-3	MW-13 04-04096-4	TB-10-8/17/04 04-04096-5		
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	0.011	-		
Dilution Factor				1	1	1		
CHROMIUM	200.8	$\mu g/L$	0.1	24.2	26.1	-		
Dilution Factor		- - -		1	6	1		
PERCHLORATE	314.0	μg/L	4	25.3	296	-		
VOLATILE ORGANIC COMPOUNDS		μο.						
Dilution Factor				1	1	1		
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	μg/L	10	< 10	< 10	< 10		
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	2.0	< 0.5		
CHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	μ g /L	0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$\mu g/L$	0.5	1.3	3.5	< 0.5		
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	0.9	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result				
Component Analyzed	Method	Unit	PQL	MW-10 04-04096-3	MW-13 04-04096-4	TB-10-8/17/04 04-04096-5			
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	<1			
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	< 10	< 10			
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	1.5	0.9	< 0.5			
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	14.6	15.4	< 0.5			
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,3,5-TRIMETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
O-XYLENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

spectfully submitted, Sminic Lau

Laboratory Director Applied P & CH Laboratories

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4096

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/4-12812

For GEOFON, Inc.

APCL Service No: 04-4096

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-8	04-04096-2
MW-10	04-04096-3
MW-13	04-04096-4
TB-10-8/17/04	04-04096-5
DUPE-6-3Q04	04-04096-1

2. Analytical Methodology

Samples are analyzed by EPA methods 524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium was detected in the field samples in the amounts significantly exceeding the reporting limit. "I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory "Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova Associate QA/QC Director Applied P & CH Laboratories

G					<u> </u>	C	HAIN	-OF-	CUS	ТО	DY	RE	COR	D			LAB	ORATORY	СОРУ	
					Shallow Wello								_			$\mathbf{O}^{\mathbf{I}}$	<u>سم ر</u>			
22632 G DIAMON	OLDEN SPRIN ID BAR, CA 917	GS DR., Sl 65 • (909) 1	JITE 270 396-7662 •	FAX (909) 396-145	5	$\sum r$	au	UL.		\mathcal{N}						01.			
SCOLL BUM		ordinator's		112			~ 961	155		RATORYS	SERVICE I		ABORATOR				REPORT (COMP.			
PROJECT NAME	1 980150	LOCATION				<u>ргол</u>	-128	12	LABOF			20 2	BORATORY		i wi Na		IENT NAME	- 1		
JPL 66-30 PROJECT CONTACT	PROJECT	PHONE NUM	BER		PROJECT F	AX			1.480/	RATORY	DDRESS					ADDR	ess 🖉	ord		Sta.
J. D. Jones PROJECT ADDRESS		92C ATE AND ZIPC			CLIEST		6 145			7 <u>6</u> 0		ng DE	nol:	a f	lue.	. <u>226</u>	32 GE STATE AND ZIPO	Hen Sp	rizes A.,	270
4800 Dave Grove N	1. Has	<u>ader</u>	va. C	A.	051	Jany	L. SK	DIV	C1		0,		<u> </u>					Bar,	CA 9	1765
PROJECT MANAGER	PROJECT	MANAGER'S	396	Ndat	PROJECT N	1anager 's 4 A 39	** 16 14	55		حص	6		J) J	Y/	//	///	/			
	······		/	/	/	Ned	ont	evel	A [X	$\langle \rangle$	5			//				
		Mat		1 ⁶ (1	me pre	served # of	Cont	Level . A	14	i h	X	×y	\$/	\angle	\angle			Comments		
1 Hto 7 19 8	17.54	tet-	8.11, .01		HU HU	5-	<u> </u>	Horne	4×	X	+	Х +			{	carul	entig	Q. P. C	70m B1	7 4
2 Mw-8		w	8.17~1	0914	1300	1	TV		X	X	X	X								
3 MW-10		1	1	35			T		X	$\overline{\mathbf{v}}$	$\overline{\mathbf{A}}$	$\frac{1}{\sqrt{2}}$							<u> </u>	
, MW-120				-			<u></u>	$\left \right $	<u> </u>	$\left \right\rangle$	$\frac{\chi}{\sqrt{1}}$	$\frac{1}{3}$						(Jan		
4 TB-10-8	10 Ind			0750	4	\checkmark			X	X	X	\times				-4	UIJ			
				<u> </u>	Hel	2	<u> </u>		X							· · · · ·	•			
6 Dupe-6-	3004	+	+		H-1 HH-3 Nore	5	₽	1 4	X	$ \times $	X	\times						<u> </u>		
7							L		1											
8			<u> </u>				1	1	_		1									
								7 .		2	<u> </u>	<u>na</u>	_							
9		1						8. ,	/7.0	Ý									·······	
10		_			4											•			·	
SAMPLES COLLECTED BY 3		М	COURIER		L NUMBER.		<u> </u>	DATE	TIM	1E					SAM	COOLER TEMPE			<u> </u>	
J. P. Jon			5-4		att		Z	17-04	(1)	:2 27	മ									
co : you and	• <u>.</u>			1 ~~~~	-		0.1/		<u> </u>	- 4								···	·	
										T										
L	Distributio	on: Whit	e - Labo	oratory (lobere	turned w	with Ana	lytical F	(eport)	; Gol	denro	d - Pr	oject F	ile; Y	ellow	- Project D	ata Mana	ger]

1

. .

.