ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

This attachment summarizes the field quality assurance, laboratory quality assurance, data verification and data validation procedures utilized for the JPL groundwater monitoring program. Data validation was performed by an independent subcontractor, Laboratory Data Consultants, Inc. Carlsbad, California. Data verification and validation indicated that the all volatile organic carbon (VOC), perchlorate and metal results obtained from the second quarter 2008 sampling event were acceptable for their intended use of characterizing aquifer quality.

ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

A comprehensive QA/QC plan for groundwater monitoring is described in detail in the Quality Assurance Project Plan for the Groundwater Monitoring Plan (Ebasco, 1993). Field and laboratory QC samples were used to fulfill QA requirements. Proper sample acquisition and handling procedures were utilized to ensure the integrity of the analytical results.

FIELD QUALITY ASSURANCE/QUALITY CONTROL

The field QA/QC samples collected for JPL groundwater monitoring included duplicate samples, equipment rinsate blanks and trip blanks. The QC sample results were used for the qualitative evaluation of the aquifer recovery. Table 1-1 presents a summary of the contaminants detected in quality control samples collected during the second quarter 2008 sampling event.

Duplicate Field Samples. Duplicate samples were used to evaluate the precision of the laboratory analyses. Duplicate samples for volatile organic compounds (VOCs), total chromium, hexavalent chromium [Cr(VI)], perchlorate, alkalinity, sodium, calcium, chloride, magnesium, potassium, sulfate, nitrate, nitrite, total orthophosphate, total dissolved solids and pH were collected from monitoring wells MW-4 (Screen 1), MW-5, MW-7, MW-15, MW-16, MW-18 (Screen 1), MW-23 (Screen 2) and MW-24 (Screen 1).

The analytical results for the duplicate samples were comparable to the results of the original groundwater samples for VOCs (Table 1) and Metals (Table 2).

Equipment Rinsate Blanks. Equipment rinsate blanks were collected each day that non-dedicated sampling equipment was used. The equipment rinsate blanks, consisting of distilled water run through the sampling equipment after decontamination, were analyzed for all contaminants of concern to monitor possible cross-contamination of samples due to inadequate decontamination. Total Cr was detected in 10 of 11 equipment blanks at low concentrations. In addition, 3 of 11 trip blanks had detections of chloroform below the reporting limit of $0.5~\mu g/L$. The source of the chloroform detections could not be determined. Detections in the equipment blanks were compared to the sample results during the data validation process to determine the impact on the sample results.

Trip Blanks. Trip blanks, which consisted of reagent-grade water placed in a vial and transported with the sample bottles to and from the field, were submitted to the laboratory with each shipment of groundwater samples. Trip blanks were used to help identify cross-contamination of groundwater samples during transport and sample handling procedures. No contaminants were detected in the fifteen trip blanks as shown in Table 1-1.

Source Blank. A source blank consisting of distilled water used for equipment decontamination was collected at the sampling site and submitted to the laboratory. This QC sample served as a check for contamination present in the source water. No contaminants were detected in the source blank collected for the second quarter 2008 event as shown in Table 1-1.

LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

Laboratory QC samples included surrogate compounds (for VOC analyses), matrix spike samples, blank spike samples, and method blanks. The results of the laboratory QC samples were used by the laboratory to determine the accuracy and precision of the analytical techniques with respect to the JPL groundwater matrix, and to identify anomalous results due to laboratory contamination or instrument malfunction.

DATA VERIFICATION AND VALIDATION

The purpose of data verification and validation is to assure that the data collected meet the data quality objectives (DQOs) outlined in the Quality Assurance Project Plan of the Groundwater Monitoring Plan (Ebasco, 1993). Data verification and validation indicated that all of the volatile organic carbon (VOC), perchlorate and metal results obtained from the second quarter 2008 sampling event were acceptable for their intended use of characterizing aquifer quality.

Data Verification. All data collected were subjected to data verification. Data verification is a review of the analytical data that includes confirming that the sample identification numbers on the laboratory reports match those on the chain-of-custody records. Data verification also includes a review of the analytical data reports to confirm that all samples were analyzed and all required analytes were quantified for each sample.

Data Validation. Data validation is a systematic review of the analytical data that is used to determine the compliance of the established method performance criteria and determine whether the data quality is sufficient to support the data quality objectives. Validation of a data package included review of the technical holding time requirements, review of sample preparation, review of the initial and continuing calibration data, review and recalculation of the laboratory QC sample data, review of the equipment performance, reconciliation of the raw data with the reduced results, identification of data anomalies, and qualification of data to identify data usability limitations.

Data validation was performed by an independent subcontractor, Laboratory Data Consultants, Inc. (LDC) of Carlsbad, CA. One hundred percent of all data analyzed by the analytical laboratories, Pace Analytical Services, Inc. and Columbia Analytical Services, Inc. (CAS) were validated. Ninety percent of the data were subjected to Level III validation and ten percent of the data were subjected to Level IV validation in accordance with the EPA Contract Laboratory Program National Functional Guidelines

for Organic/Inorganic Data Review (U.S. EPA, 1999; 2004). The data were evaluated to ensure suitability and usability for the purpose of the groundwater monitoring report.

Data Validation Qualifiers. Analytical data were qualified based on data validation. For chemical data, qualifiers were assigned in accordance with EPA guidelines.

There were two notable exceptions to the analytical criteria as summarized below:

- The nitrate analysis for MW-24-5 was performed at 63.75 hours after collection. The required holding time (HT) is 48 hours. The nitrate result for MW-24-5 was flagged by the data validator with a "J" indicating that the result should be considered an estimate.
- The total dissolved solids (TDS) analyses for MW-10, MW-15 and the MW-15 duplicate sample were performed up to 39 days after collection. The required holding time (HT) for TDS is 7 days. The TDS results for MW-10, MW-15 and the MW-15 duplicate sample were flagged by the data validator with a "J" indicating that the results should be considered estimates.

The data validation report summaries are included in Attachment 2.

REFERENCES

- Ebasco. 1993. Work Plan for Performing a Remedial Investigation/Feasibility Study. National Aeronautics and Space Administration Jet Propulsion Laboratory, Pasadena, California. December.
- U.S. EPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. February.
- U.S. EPA. 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. December.

ATTACHMENT 2: DATA VALIDATION REPORTS (SUMMARY SHEETS)

This attachment contains the summary sheets from the data validation performed by an independent subcontractor, Laboratory Data Consultants, Inc. (LDC), Carlsbad, California. Complete data validation reports are available upon request.

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue, Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on May 16, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18764:

SDG#

Fraction

P0801391

Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

May 19, 2008

Po 24520	- 11	0 pages											!	∀ ∭;	ıttac	Attachment 1	i 1	3.5																		
8064 PACCO DUE (7796A) WORNENGESI PROFINSIA PROFINSI	- 1	PO 214320	10/90 (cli	ent selec	اي				2	يّ	<u></u>	2	<u>ĕ</u>	<u>پ</u> ړ	<u>-</u>	Sar	ă	egc		\ \ 	Ă.	립		٠												
Makewages of the control of the cont		*SDG#	DATE REC'D		<u>3 g</u>	(<u>₹</u>																														
00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı×I				≥		3	S	≯	S			Н		-		Н		\vdash	≥	S	>		\vdash	H	-			 		1		*	S	≯	S
		P0801391	05/16/08	80/60/90	_	0									\vdash																	-				
															Н																					
							$oxed{\Box}$						Н	\vdash	\vdash		_																			
														_										_												
																									\vdash		_			ļ						
	ı															\vdash								T	\vdash		_		-		_					
	L					L							<u> </u>	-	\vdash										T		-			-	-					
														\vdash	_			_							<u> </u>	-		_								
															_	_		<u> </u>								ļ				<u> </u>						
																_		_										_			_					
												 	\vdash	_	\vdash									T	\vdash		 	_		<u> </u>	<u> </u>	-	ļ			
															-										\vdash		_				_					
	. 1														 			_	<u> </u>										_							
											П	\neg	\dashv		\dashv																					
														-	\dashv	\dashv		_						\exists												
	- 1														_																					
	- 1																														_					
	- 1																																			
	- 1																																			
																									<u> </u>											
															_										\vdash											
															_	_																				
	i										\dashv	\dashv	\dashv	\dashv	\dashv												_	_								
	1													\dashv		\dashv																				
		T/LR			6	0	0	0	0	0		\dashv	-	\dashv		\dashv	\dashv		0	0	0	0	0		-								٥	٥	0	6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 12, 2008

LDC Report Date:

May 19, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801391

Sample Identification

MW-23-5

MW-23-4

MW-23-3

MW-23-2

MW-23-1

EB-12-5/12/08

DUPE-3-2Q08

MW-23-5MS

MW-23-5MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

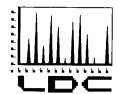
IX. Field Duplicates

Samples MW-23-2 and DUPE-3-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-12-5/12/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL


Hexavalent Chromium - Data Qualification Summary - SDG P0801391

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801391

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle May 21, 2008

505 King Avenue, Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsv Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie.

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 19, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18767:

SDG # Fraction

P0801429, P0801438 Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

4 S 0 ≥ S 0 0 ≥ S 0 > 0 0 တ > 0 S 0 > 0 S 0 ≥ 0 S 0 > 0 S 0 LDC #18767 (Battelle-San Diego / NASA JPL) > 0 S 0 > 0 S 0 > 0 8 0 Attachment 1 0 S 0 > 0 S 0 3 0 S 0 > 0 S 0 > 0 s × 0 0 Cr(VI) (7196A) s M 05/19/08 06/10/08 **5** 0 0 œ 14 10/90 (client select) 05/19/08 06/10/08 (3) DATE DUE DATE REC'D P0801429 P0801438 P0801438 PO 214320 SDG# Water/Soil T/LR 0 pages Matrix: רםכ Total œ Ω

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: May 14, 2008

LDC Report Date: May 21, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801429

Sample Identification

MW-25-5

MW-25-4

MW-25-3

MW-25-2

MW-25-1

EB-14-05/14/08

MW-25-1MS

MW-25-1MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-14-05/14/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL

Hexavalent Chromium - Data Qualification Summary - SDG P0801429

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801429

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 15, 2008

LDC Report Date:

May 21, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801438

Sample Identification

MW-26-2**

MW-26-1

EB-15-5/15/08

SB-1-2Q08

MW-26-1MS

MW-26-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-15-5/15/08 was identified as an equipment blank. No contaminant concentrations were found in this blank.

Sample SB-1-2Q08 was identified as a source blank. No contaminant concentrations were found in this blank.

NASA JPL

Hexavalent Chromium - Data Qualification Summary - SDG P0801438

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801438

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

June 3, 2008

505 King Avenue, Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on May 23, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18802:

SDG#

Fraction

P0801172

N-Nitrosodimethylamine, Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely

Erlinda T. Rauto

Operations Manager/Senior Chemist

Attachment 1

		S			П								П		l					<u> </u>					Γ	Γ		Γ		Ī	13
		3					 		_				H				H		_						\vdash	-		-		-	
		S					\vdash						┝				\vdash		H		_				-	\vdash		-	\vdash	\vdash	
					-		\vdash	_		-	_		├				_				_	_				\vdash				-	
		≥			-	L	\vdash					_	┝						<u> </u>									-			_
		S				_	<u> </u>					<u></u>							_						_	L			Ш	\dashv	9
		≯					_												_		L				L.				Ш	\sqcup	릐
		S				 										 					L				 					Ц	의
		≷																													٥
		S																													٥
		≥																													0
		S																							 				П		0
		>																											П		0
		S		•																					Г						0
		3								_																					0
		S																												一	0
LDC #18802 (Battelle-San Diego / NASA JPL)		3																				П								\dashv	0
\ 		S					<u> </u>							_						Г					Т				\sqcap	\dashv	
/S\		3														 			_										Н	\dashv	ᅦ
N		S																							_						0
/ 01		3	\dashv					_																					$\vdash \vdash$	\dashv	
ieg		S																										\vdash	$\vdash \vdash$	\dashv	
ם ע			_																						_			\vdash	$\vdash \vdash$	\dashv	╣
Sai		≯	\dashv		_	 									_										_			_	\vdash	\dashv	
le-(S																	<u> </u>										$\vdash \vdash$	\dashv	븨
ttel		≯					_													\vdash		Н			 					_	긔
Bat		S	_				<u> </u>						_																	\dashv	릐
2 (≯											_																	_	의
380		S											_																	\dashv	의
#18		≥																													
၁		S																													의
		≥																													0
	VI)	S	0	0																											0
	Cr(VI) (7196A)	≥	æ	-																											6
	ro- ines 21)	S	0	0																											0
	Nitro- samines (521)	8	3	1																											4
ect			80/																												
nt se	(3) DATE DUE		91/9	9/16																											
10/90 (client select)		ŀ	05/23/08 06/16/08	05/23/08 06/16/08		 _																	_		_				\vdash	_	ᅦ
06/0	DATE REC'D		/23/(/23/(
7	- 2		3	05																									Ц	\dashv	_
320	#5	ē	P0801172	P0801172																											~
PO 214320	SDG#	ter/S	8	,080																										ĺ	T/LR
요		Water/Soil		<u>а</u>														İ						-			-				
		Matrix:	\dashv	-					Щ							 _				Н				,	 				\dashv	\dashv	╝
	ГРС	Σ	∢	۷																											Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

May 30, 2008

Matrix:

Water

Parameters:

N-Nitrosodimethylamine

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801172

Sample Identification

MW-4-1**

DUPE-1-2Q08

MW-4-1MS

MW-4-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 521 for N-Nitrosodimethylamine.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was reviewed as applicable.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/4/08	N-Nitrosodimethylamine	44	All samples in SDG P0801172	J (all detects) UJ (all non-detects)	Α

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No N-Nitrosodimethylamine was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No N-Nitrosodimethylamine was detected in any of the samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL N-Nitrosodimethylamine - Data Qualification Summary - SDG P0801172

SDG	Sample	Compound	. Flag	A or P	Reason
P0801172	MW-4-1** DUPE-1-2Q08	N-Nitrosodimethylamine	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)

NASA JPL N-Nitrosodimethylamine - Laboratory Blank Data Qualification Summary - SDG P0801172

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

May 27, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801172

Sample Identification

MW-4-5

MW-4-4

MW-4-3

MW-4-2

MW-4-1**

EB-03-4/24/08

DUPE-1-2Q08

MW-4-3MS

MW-4-3MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-03-4/24/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801172

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801172

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

May 30, 2008

505 King Avenue, Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsv Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 27, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18813:

SDG#

Fraction

P0801465, P0801487

Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

	0 pages													Att	Attachment 1	hent	-																			
	PO 214320	10/90 (cli	10/90 (client select)	유					ည	#18	381	3 (E	3att		` -S	ᇤ	LDC #18813 (Battelle-San Diego / NASA JPL)] []	2	18/	う	1														
TDC	\$DG#	DATE REC'D	(3) Date Due	25	Cr(VI) (7196A)																															
Matrix:	k: Water/Soil			M	S	*	S	3	S	≥	S	≥	လ	≥	S	3	S		S	<u></u> ≥	S	°/ ≥	8	S	≥	S	≥	လ	≥	S	3	S		S	37	ပ
٧	P0801465	05/27/08 06/17/08	06/17/08	4	0	L			_								 	I^-	\vdash	\vdash			┢╾	├—	_							-		t	├—	\equiv
В	P0801487	05/27/08 06/17/08	06/17/08	ш	٥																				_									-	\vdash	
В	P0801487	05/27/08 06/17/08	06/17/08		0000000000000	555000	Ш					Щ	Ш																						<u> </u>	T
1																					Н															-
																				-									L.							T
											Щ									H															\vdash	
											Щ								\vdash		 		-	_									-	ļ		_
																		\vdash	\vdash	\vdash	\vdash			_												
							_				_	L						 	 	\vdash				_											┝	T
						<u> </u>	_	_									\vdash			 						_									 	
																	\vdash	ļ	\vdash	\vdash	\vdash															ī
																					 														_	
									Щ									П			_															T
																					_													-		T
							_	\Box																												
							Щ																_													
																																			\vdash	
										Щ																										
1									_																											
\exists						_	_		_																											
				_			_		_										\dashv	\dashv	-	\dashv	\dashv		_											_
\dashv																																				_
1						_																														
\dashv						_	_		_										\dashv		\dashv	\dashv														
\dashv							_	_	_	_									\dashv	\dashv	\dashv	\dashv	\dashv	_	_											_
\dashv						_	_		_	_	\perp	\bot				\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	4												
\top				_	_	_			_	\bot	\bot	\bot				1	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-		_							\dashv			Т
1						_		_								7	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	_									\dashv		\dashv	— ï
otal	T/LR			8	٥		의	<u></u>	_		릐			0	0	0					0 0		0	_	_	0	0	0	0	0	0	0			ő	8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 19, 2008

LDC Report Date:

May 29, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801465

Sample Identification

MW-1

MW-9

MW-1MS

MW-1MSD

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801465

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801465

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

NASA JPL

Collection Date:

May 20, 2008

LDC Report Date:

May 29, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801487

Sample Identification

MW-7** **DUPE-5-2Q08** MW-7MS MW-7MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-7MS/MSD (All samples in SDG P0801487)	Hexavalent chromium	-	115 (82-114)		J (all detects)	A

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-7** and DUPE-5-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801487

SDG	Sample	Analyte	Flag	A or P	Reason
P0801487	MW-7** DUPE-5-2Q08	Hexavalent chromium	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801487

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle June 2, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on May 30, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18843:

SDG # Fraction

P0801523 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

ſi			_							_		_	=						_	_	_	_	_								=	_	
			S					_	┡					ļ																		_	5
			>																														٥
			S																														0
			×																														0
			s					Г																									0
			>							Ì																			H			_	-
			S				\vdash		H	 						_					_		_								\vdash	┪	0
İ							-	-	\vdash	╁				\vdash							_	_										\dashv	-
l			8				┝	H	⊢	├	_	<u> </u>						_											L		\vdash	\dashv	0
		1	S				_	_	┝	_	_	_		_	_														_			_	긔
			8																												Ш		0
			S						L			_																					의
			>																														0
			S																														0
			>																													\exists	
			S	П							Γ		Γ		Г															П		\dashv	
:	PL)		*	\Box	<u> </u>			T	\vdash	T		\vdash					<u> </u>	М			Н			 					 		\sqcap	\dashv	0
	3 (Battelle-San Diego / NASA JPL)		S	\vdash		\vdash	\vdash	 	\vdash	\vdash	\vdash	\vdash	 	\vdash	\vdash			\vdash											\vdash		\dashv	\dashv	
	1 S/	•	W	\vdash		-	_		_	\vdash	_	_	_	\vdash				_						 					 -		\dashv	\dashv	┩
	Z			_		┝	_	\vdash	\vdash	 		\vdash		-					_												\dashv	\dashv	릐
	/ 0		S		_		_	-	-	<u> </u>	_	_	_	_							_										\dashv	_	릐
	eg		Χ				_		L	ļ	_	_	L																			4	의
<u></u>	Ö		S				L		L	L		_																			Ш		
Attachment 1	an		>							<u> </u>																							
3Ch	S -€		S																														0
Att	elle		>																													\neg	
	att		S																														ᆒ
	(B		8																														ᆲ
	43		S						T					\vdash																_	\dashv	7	
	LDC #1884		*						H	┢┈				_															 		\dashv	\dashv	0
	#		s l				_	<u> </u>	\vdash	\vdash	-		\vdash	\vdash	_												-		_	_	\dashv	\dashv	-1
ŀ	20					\vdash			\vdash		-		_	<u> </u>										-					 		\dashv		
ĺ	_		<u> </u>	Н		_		_	\vdash	-		_	<u> </u>																		_	\dashv	<u></u>
			S						_	_		L	L											_					<u> </u>		\rightarrow	\dashv	의
			<u>×</u>					<u>L</u> .	L																							╛	0
		Cr(VI) (7196A)	S	0					<u> </u>																								0
	.	25	>	5																				İ									5
	alect			80/0																											\Box	T	
	10/90 (client select)	(3) DATE DUE		05/30/08 06/20/08																													
	(clie	0		98				\vdash	┢												-				\dashv			\dashv			\dashv	\dashv	\dashv
	06/0	DATE REC'D		/30/(İ	
	1(- 2		05						_														_								\Box	_
1	320	淮	-	523																												ı	
ges	PO 214320	*SDG	er/S	P0801523																						Ì							T/LR
0 pages	8		Water/Soil	ď					İ																								
Į.		ГРС	Matrix:	⋖																ļ	l					ĺ					T	I	Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 22, 2008

LDC Report Date:

May 30, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801523

Sample Identification

MW-10

MW-15

DUPE-7-2Q08

MW-10MS

MW-10MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-15 and DUPE-7-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801523

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801523

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on June 2, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18863:

SDG#

Fraction

P0801570

Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

June 4, 2008

				_		,	_	_	, .	_	_		_	-				_				_								-					
			S					L		L	L																								2
			∣≥														İ																		0
			S																	1		Т		T	<u> </u>				1	1	Г	T	П		
			3		†		T	T	T	T	<u> </u>	┪	T	1-		T	 	H	┢	+		┢	╁╴	H	1	-	H	╁	╁╌		+	\vdash	\vdash	+	
			+-	-	╁	╁	┢	┢	╁	╁	-		\vdash	┢	+	-	├	┝	╁	╁	-	┼-	╁	┝	╂	-	┝	├	├-	\vdash	╀╌	┝	╂╌┨	\dashv	{
			S	+	╄	-	┢	-	╀	╀		<u> </u>	┝	ļ	╀	-	<u> </u>	L	<u> </u>	╀	<u> </u>	_	_	┡	╄	_	_		<u> </u>	_	ļ.,	┡	\perp	_	
		<u> </u>	≥	_	╀	ļ	_	L	_	╙	_	_	L	ļ		<u> </u>	_		L	<u> </u>			L	L	<u> </u>			<u> </u>	L			L		╛	0
			S		L	L	<u> </u>	<u></u>																											
			≥																																
			S																															┪	0
			>																														П	1	
			S	+-	T		<u> </u>	T	╁		<u> </u>			-	T		_		<u> </u>	T	\vdash	H		\vdash	\vdash	\vdash	-	H	┢	\vdash	\vdash	╁╴		\dashv	
						Ī	Π				1								T	T	T		T						┢		 	╁	\vdash	\dashv	
			S	+			T	T	T					T				T		1		┢	T	H	1	\vdash	-	\vdash	┢	+	┢	H	H	\dashv	
				T	<u> </u>		\vdash	\vdash			T		-		╁		<u> </u>		t	\dagger		\vdash	\vdash	H	\vdash	-		┢	├	┢	╁	\vdash		+	
			S	-	 			t	T			_			 	-	\vdash	-	H	-	\vdash		-		\vdash	_	\vdash	-	╁╌	┢	-	┢	╁	\dashv	
	(٦		3	⊢	-		 	-	\vdash	\vdash	\vdash	-	 	┢	ļ		H	-	\vdash	╁┈	\vdash			\vdash	-			-	┝	┝	<u> </u>	\vdash	\vdash	+	의
	5		1	1	┝	-	\vdash	├	┝	\vdash	-	\vdash	<u> </u>	\vdash		-			-	\vdash	-	H	┞	<u> </u>	-	L		L	<u> </u>	┝	L	├-	Н		
	SA		S		┝	┝	-	H	┼-		-	_	_	_		ļ.,			_	├	<u> </u>			_			_		<u> </u>		_	_	Ш	4	의
	Ž	<u> </u>	≥	_	_	ļ		ļ	_	L			<u> </u>		L.	_	_			_	_		ļ	L	<u> </u>					L	L			_	의
			S	├					_				_							L.	L		_		<u> </u>								Ш		0
	ğ		≥					_		_																								İ	
7	ă		S																																0
neu	al		≥																															T	0
Attachment 1	S		S																															T	
Att	LDC #18863 (Battelle-San Diego / NASA JPL)		3																														\Box	\top	
	att		S																												┢			\top	0
	9		3																														\top	\rightarrow	
	363		S																_										-			-	\vdash	- -	
	188		3																	╁╴									-				\vdash	$\boldsymbol{+}$	
	# 0		s							┢										\vdash	 									\vdash		H	\dashv	-	
	<u> </u>		*	_	_			_		\vdash										H	-					\dashv					_		\vdash	-	
!	1	ļ	S				\vdash		_					_	\vdash	<u> </u>	=	_		-		_										Н	_	+	의
			-		_	_		_	-			_								-	_					_	_								의
		- 3	3		_		H					_								_					Ш	_	_					Щ		\bot	의
		Cr(VI) (7196A)	S	0	_					L		_						Щ		<u> </u>						\Box									
	ਜ਼	3 6	≯	2	_						_		_					_																	2
	10/90 (client select)	(3) DATE DUE		06/02/08 06/23/08																						ł									
	ent) 6 6		06/2																															-
	<u>ii</u>	j j		/08																						\neg	\dashv						\dashv	╁	1
	6/01	DATE REC'D		6/02							ļ					j	ŀ									ı	-						İ	ĺ	
<u> </u>	`		}			-	\dashv				\dashv	-	\dashv		\dashv	\dashv	-	\dashv		-	\dashv		_			4		\dashv		_	-	_	\perp	_	-∥
I								İ			ı				ľ		ı																		
,	4320	\$DG#	ố	157											İ											ı									~
0 pages	PO 214320	SD	Water/Soil	P0801570										ľ																					Z Z
0	تە																																		
	ŀ	<u>u</u>	Matrix:		\dashv	\dashv			\dashv	\dashv		\dashv	\dashv	-	\dashv	_	\dashv	4	_		_	\dashv	4	_	\dashv	_	\dashv	_	_		_		\bot	\perp	_
		LDC	Σ	⋖																- [ota

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

NASA JPL

Collection Date:

May 27, 2008

LDC Report Date:

June 4, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801570

Sample Identification

MW-5 MW-6

DUPE-8-2Q08

MW-5MS

MW-5MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-5 and DUPE-8-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801570

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801570

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie.

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 5, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18883:

SDG # Fraction

JPL98 Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

June 23, 2008

			T	T	7-1		i	1	1	T	T		T	_	T				r	1		_	_						T	T	<u> </u>			\equiv	
			S	₩		_				_	<u> </u>	<u> </u>	<u> </u>						<u> </u>		_		Ш					<u> </u>	L						56
			≥																																
			S																																0
																																			0
			S	 	Н				H	\vdash	<u> </u>									H		-	┢					\vdash			 	_		H	0
			-	₩	Н				\vdash				-	-				_		-								_	_		 	H	\vdash	$\vdash\vdash\vdash$	Н
		ļ	≥	 		Ш		_	┝	 	_		_		_					_	ļ	L						<u> </u>		_	_				의
			8	₩	Н			L	L	-	_	_		ļ	_																				의
			≥						L																										0
			S																																0
			∣≥																																0
	100		S						T																									\Box	
			≥																																0
			s					┢																									\dashv	\neg	0
			≥	\vdash	\vdash						-		 	\vdash	\vdash							\vdash		_	\dashv									\dashv	\dashv
			8	 	Н				_				\vdash	\vdash											_									\dashv	_
	Î		\vdash	 	$\vdash\vdash$									_																				\dashv	긔
	d D		≥		\sqcup				_														Щ										_		
	3A		\ <u>\</u>		\sqcup						L																								0
	¥		≥																																0
	1	TDS (160.1)	ဖ	0																															0
	go	± 9	≥	9																														\exists	9
_	Jie	7 €	S	0		Ì																			٦									十	
ent	_	CLO ₄ (314.0)	3	7																													7	\dashv	7
Attachment 1	Sa		S	0						Н						\dashv		_								\dashv	\dashv				_		_	\dashv	
\ttac	<u>=</u>	pH (150.1)		9	\dashv												\dashv	\dashv	-				Н		-	\dashv	\dashv	\dashv		\dashv			-	\dashv	\dashv
1	tte		S	0	\vdash	_		_								\dashv	\dashv	-	_		-	_	\dashv		_	\dashv	_	_			_		\dashv	\dashv	9
	Ba	NO ₂ -N (300.0)	—	-	\dashv	\dashv										\dashv	\dashv	_			\dashv			\dashv	-		\dashv				\dashv	_	_	\dashv	ᆀ
	33 (≥	1	\dashv							_				\dashv	4	_	_		_				_	\dashv	_	_					4	4	
	LDC #18883 (Battelle-San Diego / NASA JPL)	CI,SO4, O-PO4 (300.0)	s		-	4										_	_	4	_					_	4	_	_	_			_	_	_	\dashv	<u> </u>
	#		≯	7		_										4	_	\dashv	_													\Box	_		<u> </u>
	ပ္က	Alk. (310.1)	S	0	_																														0
	j	_ કુ	≯	9																															ဖ
		Metals (200.8 /200.7)	တ	0																	ı														0
		2,6 ₹	≥	8																									T			1		T	8
		رة ۸	s	0															\exists		\exists					T	7	\exists		T			1	十	
		VOA (524.2)	3	6		\neg												7	1		1			7	1	\neg	\exists	\exists	7		\dashv		\dashv	\dashv	6
i	ect)			88	_	\dashv	1									1			+				\dashv		\dashv	\dashv				┪	1	\dashv	\dashv	_	\exists
	t se	(3) DATE DUE		/56/			İ													ı															
	10/90 (client select)			06/05/08 06/26/08	4	4	_				_	4	_	_	_			_	_	_		_			\downarrow	_	_	_	_			4	_	\downarrow	_
l	o) (c	DATE REC'D		2/08		ı																	ı					Ì							
	Ş	75 E		0/90	ļ							ı	ĺ						ı									-							
						1					7			\exists		7	\exists	寸			┪	\dashv	7		寸	7	\dashv	\dashv				1	1	\forall	1
Ϋ́	0															ĺ																			
ges	1432	SDG#	Soil	JPL98	ı			ı		ı	ı						1	İ	Ì			İ				l				ļ	ļ				T/LR
868 pages-EX	PO 214320	S	Water/Soil	비																															$\vdash \parallel$
8	•		3																		ĺ														
	1	ပ	Matrix:	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	+	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv	\dashv	+	+	\dashv	릚
L		CPC	ž	⋖																														丄	Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 22, 2008

LDC Report Date:

June 19, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL98

Sample Identification

MW-14-5

MW-14-4

MW-14-3

MW-14-2

MW-14-1

EB-01-04/22/08

TB-01-04/22/08

MW-14-2MS

MW-14-2MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-14-2MS/MSD (MW-14-2)	cis-1,3-Dichloropropene	157 (60-140)	147 (60-140)	-	J (all detects)	A

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-01-04/22/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-01-04/22/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL98

SDG	Sample	Compound	Flag	A or P	Reason
JPL98	MW-14-2	cis-1,3-Dichloropropene	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL98

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 22, 2008

LDC Report Date:

June 13, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL98

Sample Identification

MW-14-5

MW-14-4

MW-14-3

MW-14-2

MW-14-1

EB-01-04/22/08

MW-14-2MS

MW-14-2MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-01-04/22/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-01-04/22/08	Chromium	1.03

NASA JPL Metals - Data Qualification Summary - SDG JPL98

No Sample Data Qualified in this SDG

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL98

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 22, 2008

LDC Report Date:

June 12, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL98

Sample Identification

MW-14-5

MW-14-4

MW-14-3

MW-14-2

MW-14-1

EB-01-04/22/08

MW-14-5DUP

MW-14-4MS

MW-14-4MSD

MW-14-2MS

MW-14-2MSD

MW-14-2DUP

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate Alkalinity and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/5/08	CCV3	Perchlorate	134.7 (85-115)	EB-01-04/22/08	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-14-4MS/MSD (All samples in SDG JPL98)	Orthophosphate	82 (90-110)	83 (90-110)	-	J (all detects) UJ (all non-detects)	A
MW-14-2MS/MSD (All samples in SDG JPL-98)	Perchlorate	137 (80-120)	137 (80-120)	-	J (all detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-01-04/22/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-01-04/22/08	рН	6.9 units
EB-01-04/22/08	Bicarbonate alkalinity	4.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL98

SDG	Sample	Analyte	Flag	A or P	Reason
JPL-98	EB-01-04/22/08	Perchlorate	J (all detects)	Р	Calibration verification (%R)
JPL-98	MW-14-5 MW-14-4 MW-14-3 MW-14-2 MW-14-1 EB-01-04/22/08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL-98	MW-14-5 MW-14-4 MW-14-3 MW-14-2 MW-14-1 EB-01-04/22/08	Perchlorate	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL98

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201

ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 9, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18908:

SDG # Fraction

JPL99 Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

June 24, 2008

	828 pages-EX												¥	Attachment 1	ment	-																			
	PO 214320	10/90 (cli	10/90 (client select)	•				9	# い	189	80	(Ba	ttel	LDC #18908 (Battelle-San Diego / NASA JPL)	au	Die	go	Ž	1SA	5	Ç						N.								
TDC	*SDG#	DATE REC'D	(3) DATE DUE	VOA (524.2)		Metals (200.8 /200.7)	als 0.8	AIK. (310.1)		CI,SO4, O-PO4 (300.0)		NO ₂ -N NO ₂ -N (300.0)		pH (150.1)	CLO ₄ (314.0)		TDS (160.1)	∞ €																	
Matrix:	: Water/Soil			3	S	3	S	≥	S	≥	8	8 M	≥	S	≥	တ	3	S	× ≥	S		8	s /	≥	8	≥	S	≥	S	≥	8	≥	S	>	S
4	JPL99	80/60/90	80/08/90	7	0	10	0	9	Н			1	-	 	8		-	_	-		┿	\vdash	⊢	 	┼		+	+-	+	ļ					Ī
\dagger										\Box	\dashv		\square				\Box	\vdash		Н	\vdash	$\vdash \vdash$							Ц						
									\top	\dashv	\dashv	\dashv	-	_			+		\dashv	\dashv		\dashv	-	_	_	_		_							Ĭ
										\dashv	\dashv	\dashv	_	_			\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv		\dashv	_	_								
T					寸				寸	\dashv	\dashv		\dashv	\downarrow			\dashv	\dashv	\dashv	_	-	\dashv	\dashv	_		_	_								
T					\dashv				\dashv	\dashv	\dashv	\dashv	\dashv	_			\dashv	\dashv		\dashv		_	\dashv	\dashv	-				_						
1									\dashv	7	1								\dashv																
					\exists				寸	\dashv			_					\dashv																	
1					7		Ì		\neg																										Ī
1									\exists		\dashv	_										ļ								_					Γ
																								_	_										
\dashv																						\vdash		-							<u></u>				
1									\neg									H	Н			Н													
												-	_																						
1											\vdash									\vdash		\vdash		-			_	_							
\dashv							\neg																					_	ļ	_					Γ
							\neg		\neg																		L								
_																	-				-	_					L	_		ļ					Ī
																		\vdash	\vdash		_	\vdash	_	L			_								Π
																		\vdash		_								_							Π
									\dashv									\vdash	_																
+					\neg	7		\neg				-																							Γ
\dashv							\neg			\dashv	\dashv	\dashv																							
											\dashv	_																							Π
\dashv										_	\dashv							H										L							Г
\dashv											-	-	_																						
1					\dashv																							<u> </u>							Γ
\dashv					\dashv		\exists				_	_																_	_	<u> </u>					
\dashv					\neg	_												\vdash					H	L	Ш										
+					\neg	\dashv		1	\dashv	\dashv	-							\dashv																	
1					\dashv					\dashv			_																						
otal	T/LR			7	ᅴ	5	0	9	0	8	~ C	8 0	4	0	8	0	9	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
																				I		ı		I			l	1							Î

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 23, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL99

Sample Identification

MW-22-5

MW-22-74

MW-22-3

MW-22-2

MW-22-1

EB-02-04/23/08

TB-02-04/23/08

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-02-04/23/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-02-04/23/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL99

No Sample Data Qualified in this SDG

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL99

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 23, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL99

Sample Identification

MW-22-5

MW-22-4

MW-22-3

MW-22-2

MW-22-1

EB-02-04/23/08

MW-22-5MS

MW-22-5MSD

EB-02-04/23/08MS

EB-02-04/23/08MSD

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
MW-22-5 MW-22-4 MW-22-3 MW-22-2 MW-22-1	Arsenic Chromium Lead	More than ten samples were run between CCVs.	No more than ten samples to be run between CCVs.	None	P

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
MW-22-5 MW-22-4 MW-22-3 MW-22-2 MW-22-1	Arsenic Chromium Lead	More than ten samples were run between CCBs.	No more than ten samples to be run between CCBs.	None	Р

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-02-04/23/08 was identified as an equipment blank. No metal contaminants were found in this blank.

NASA JPL Metals - Data Qualification Summary - SDG JPL99

SDG	Sample	Analyte	Flag	A or P	Reason
JPL99	MW-22-5 MW-22-4 MW-22-3 MW-22-2 MW-22-1	Arsenic Chromium Lead	None	Р	Calibration
JPL99	MW-22-5 MW-22-4 MW-22-3 MW-22-2 MW-22-1	Arsenic Chromium Lead	None	Р	Method blanks

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL99

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 23, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL99

Sample Identification

MW-22-5

MW-22-4

MW-22-3

MW-22-2

MW-22-1

EB-02-04/23/08

MW-22-5DUP

MW-22-3MS

MW-22-3MSD

MW-22-1MS

MW-22-1MSD

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/6/08	CCV1	Perchlorate	148.9 (85-115)	MW-22-5 MW-22-4 MW-22-3 MB	J (all detects)	Р
5/6/08	CCV2	Perchlorate	142.2 (85-115)	EB-02-04/23/08	J (all detects)	Р

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/5/08	ICV	Perchlorate	153.6 (85-115)	MW-22-5 MW-22-4 MW-22-3 MB	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-22-3MS/MSD (All samples in SDG JPL99)	Orthophosphate	87 (90-110)	87 (90-110)	-	J (all detects) UJ (all non-detects)	Α

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS	Perchlorate	140 (85-115)	MW-22-5 MW-22-4 EB-02-04/23/08	J (all detects)	Р

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

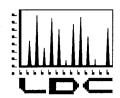
Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-02-04/23/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:


Equipment Blank ID	Analyte	Concentration
EB-02-04/23/08	pH Total dissolved solids Bicarbonate alkalinity	7.1 units 12 mg/L 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL99

SDG	Sample	Analyte	Flag	A or P	Reason
JPL-99	MW-22-5 MW-22-4 MW-22-3 EB-02-04/23/08	Perchlorate	J (all detects)	Р	Calibration verification (%R)
JPL-99	MW-22-5 MW-22-4 MW-22-3	Perchlorate	J (all detects)	Р	Calibration verification (ICV %R)
JPL-99	MW-22-5 MW-22-4 MW-22-3 MW-22-2 MW-22-1 EB-02-04/23/08	Orthophosphate	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL-99	MW-22-5 MW-22-4 EB-02-04/23/08	Perchlorate	J (all detects)	P	Laboratory control samples (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL99

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

June 25, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 10, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18919:

SDG#	<u>Fraction</u>
JPL100	Volatiles, 1,4-Dioxane, Metals, Wet Chemistry

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

									-																										
			ြင						L																										76
			>																															П	0
			S		Т																Γ	Ī								Г		1	П	一	J
			>		1			1	†		T			T	T			\vdash		┪	T	Т	\vdash				 	\vdash		H	<u> </u>	-	H	\dashv	0
			S	+-	╁	ļ	┢	 	+	+	\vdash	H	┢	╁─	┢	\vdash		 	_	\vdash	\vdash	-	┢		<u> </u>		\vdash		H	-	-		$\vdash \vdash$	\dashv	$-\parallel$
			—	┿	+	\vdash	├	╁	┢	┢	-	-		├-	 	⊢	├	├-	_		┝	-			_		-		<u> </u>	_	⊢	┢	\vdash		긔
			≥	╁	┢	-	H	╀	╄	 	\vdash	┝	-	L	┞	_	-			<u> </u>		_	<u> </u>				_	_				_	\sqcup	\dashv	의
	Ş.		S	┿	1	_		╀	╀	╄	-	L		_	_	_		_		<u> </u>	ļ			_			_					<u> </u>	\sqcup	\dashv	٥
			≥	_		_	_	ļ	L	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$	<u> </u>			L																					0
			S		L												L																		0
			≥											ĺ																					
			S																														П	寸	
			≥																														П	ヿ	0
			S							1			Π																Г		Г		П	寸	
			>	Γ		<u> </u>			Γ	1					Г		T					T								\vdash	\vdash		\sqcap	十	
ĺ			S	1	T	T			T				T	\vdash	\vdash		\vdash		<u> </u>		\vdash	\vdash						\vdash		\vdash			$\vdash \vdash$	\dashv	0
	LDC #18919 (Battelle-San Diego / NASA JPL)		3	├	1	\vdash			H	T	\vdash			_	\vdash	\vdash	-	-		\vdash	<u> </u>	\vdash	\vdash	Н				\vdash		\vdash	-	\vdash	$\vdash \vdash$	\dashv	
	5		S	╁	0		_	\vdash	┢	┼	\vdash	\vdash	-	H			<u> </u>					 			-			\vdash					$\vdash \vdash$	\dashv	\dashv
	SA	TDS (160.1)	_	├	55555000			-	\vdash	\vdash	_		-	 			-								-						_		\vdash	+	릐
	N		≥	\vdash	300		_	┡	├	-	H	<u> </u>	L	┝			_	_													<u> </u>		$\vdash \vdash$	\dashv	
) (CLO ₄ (314.0)	S	⊢	200		_	L	_	ļ		_		_	_		_								_							L		\dashv	릐
	ege		≥	∞				L	L	<u> </u>				_																				ightharpoons	6
<u>+</u>	ā	pH (150.1)	S	l°	0				L			L																					Ш		٥
neu	au		≥	^	_				L																										8
Attachment	S-é	NO ₂ -N (300.0)	တ	0	0																													П	
Att	elle	228	≥	∞	-																													T	6
	att	o ² o ² ⊙	S	0	0																												\top	寸	ᆌ
	(B	CI,SO ₄ , O-PO ₄ (300.0)	≥	8	100																												\neg	\dashv	ᆒ
	19		S	_	0					T						_																		+	
	88	Alk. (310.1)			SERVE SE	\vdash					Н														_	\dashv							\dashv	+	
	#		S	0	EGGERER		_				_													\dashv	\dashv		-			_				\dashv	8
	DC	Metals (200.8 /200.7)	⊢	_	100000000	\vdash			-				_												4	_							\dashv	-	의
		() (e	≥	_		Н		_	_		_														4	_							_	_	13
		1,4- Dioxane (8270C)	တ	_	1000000000			_											_	_					-	_			_				\dashv	_	의
		Dic (8;	٨		Ē																			\Box	_	_							\perp	_	7
		VOA (524.2)	S	0	15,6992250																												\perp		0
	္	(52	≯	6	No. of the last																														웨
	Selec	<u>, 2 u</u>		1/08	1/08						ı																						T	T	
	10/90 (client select)	(3) DATE DUE		06/10/08 07/01/08	06/10/08 07/01/08																	ı												l	
	(clie	Q		80	8													\dashv	\dashv					_	_	┪	\dashv		\dashv	1			+	十	\dashv
	06/0	DATE REC'D		/10/	10/2																		l		ļ				ĺ				Ì		
	=			8	8					Ц	\dashv							\Box	_	_			_		_	_	_	_	_	_		_	\dashv	\bot	
껇											Ì							Ì																	
1,310 pages-EX	320	独	ī	8	8																		1												$\ $
0 pa	PO 214320	SDG#	er/S	JPL100	JPL100																														T/LR
1,31	8		Water/Soil	,																	l														
					\sqcup	ightharpoonup				Щ	_					\perp			ightharpoonup	_	_			\perp		ightharpoonup	\perp						\perp	\perp	
		CDC	Matrix:	۷	∢	Ì																													Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL100

Sample Identification

MW-4-5

MW-4-4

MW-4-3

MW-4-2

MW-4-1**

EB-03-4/24/08

DUPE-1-2Q08

TB-03-4/24/08

MW-4-3MS

MW-4-3MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
4/30/08	cis-1,3-Dichloropropene	34.33	TB-03-4/24/08 B043008MVOWY2	J (all detects) UJ (all non-detects)	Р

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentr		
Compound	MW-4-1**	DUPE-1-2Q08	RPD
Chloromethane	0.25	0.55	75

XVII. Field Blanks

Sample TB-03-4/24/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-03-4/24/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-03-4/24/08	Chloromethane Chloroform	0.58 0.29

NASA JPL Volatiles - Data Qualification Summary - SDG JPL100

SDG	Sample	Compound	Flag	A or P	Reason
JPL100	TB-03-4/24/08	cis-1,3-Dichloropropene	J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL100

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

1,4-Dioxane

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL100

Sample Identification

MW-4-1**

DUPE-1-2Q08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for 1,4-Dioxane.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent EPA Level IV review. EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0%.

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No 1,4-Dioxane was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No 1,4-Dioxane was detected in any of the samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL 1,4-Dioxane - Data Qualification Summary - SDG JPL100

No Sample Data Qualified in this SDG

NASA JPL

1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG JPL100

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL100

Sample Identification

MW-4-5

MW-4-4

MW-4-3

MW-4-2

MW-4-1**

EB-03-4/24/08

DUPE-1-2Q08

MW-4-5MS

MW-4-5MSD

MW-4-4MS

MW-4-4MSD

MW-4-3MS

MW-4-3MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/9/08	CCV3	Chromium	87.0 (90-110)	MW-4-5 MW-4-4 MW-4-2 MW-4-1** EB-03-4/24/08 DUPE-1-2Q08 MW-4-4MS MW-4-4MSD	J (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Iron	140 ug/L	MW-4-3

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	MW-4-1**	DUPE-1-2Q08	RPD
Calcium	62900	58900	7
Iron	239	130	59
Magnesium	20000	18600	7
Sodium	20000	22800	13

XIV. Field Blanks

Sample EB-03-4/24/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-03-4/24/08	Chromium	1.83

NASA JPL Metals - Data Qualification Summary - SDG JPL100

SDG	Sample	Analyte	Flag	A or P	Reason
JPL100	MW-4-5 MW-4-4 MW-4-2 MW-4-1** EB-03-4/24/08 DUPE-1-2Q08	Chromium	J (all detects) UJ (all non-detects)	Р	Calibration (%R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL100

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 24, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL100

Sample Identification

MW-4-5

MW-4-4

MW-4-3

MW-4-2

MW-4-1**

EB-03-4/24/08

DUPE-1-2Q08

MW-4-3MS

MW-4-3MSD

MW-4-3DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/5/08	ICV	Perchlorate	153.6 (85-115)	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08 MW-4-3MS MW-4-3MSD PB1	J (all detects)	Р
5/5/08	CCV1	Perchlorate	148.9 (85-115)	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08 MW-4-3MS MW-4-3MSD PB1	J (all detects)	Р
5/5/08	CCV2	Perchlorate	144.2 (85-115)	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08 MW-4-3MS MW-4-3MSD	J (all detects)	Р
5/19/08	CCV1	Perchlorate	117.1 (85-115)	DUPE-1-2Q08 PB3	J (all detects)	P
5/20/08	CCV2	Perchlorate	121 (85-115)	DUPE-1-2Q08	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-4-3MS/MSD (All samples in SDG JPL100)	Nitrate as N Orthophosphate Sulfate Chloride	86 (90-110) 84 (90-110) 87 (90-110)	87 (90-110) 86 (90-110) 88 (90-110) 86 (90-110)	- - -	J (all detects) UJ (all non-detects)	А
MW-4-3MS/MSD (MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08)	Perchlorate	150 (80-120)	151 (80-120)	-	J (all detects)	A

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS (MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08 PB1)	Perchlorate	140 (85-115)	-	-	J (all detects)	Р

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

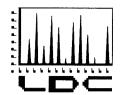
Samples MW-4-1** and DUPE-1-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-4-1**	DUPE-1-2Q08	RPD
Bicarbonate alkalinity	180	190	5
Chloride	20	20	0
Nitrate as N	1.5	1.5	0
Sulfate	54	55	2
Total dissolved solids	290	290	0

	Concentration (units)		
Analyte	MW-4-1**	DUPE-1-2Q08	RPD
рН	7.2	6.8	6

X. Field Blanks

Sample EB-03-4/24/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:


Equipment Blank ID	Analyte	Concentration
EB-03-4/24/08	pH Bicarbonate alkalinity	5.1 units 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL100

SDG	Sample	Analyte	Flag	A or P	Reason
JPL100	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08 DUPE-1-2Q08	Perchlorate	J (all detects)	Р	Calibration (CCV %R)
JPL100	MW-4-5 MW-4-4 MW-4-3 MW-4-2 MW-4-1** EB-03-4/24/08 DUPE-1-2Q08	Nitrate as N Orthophosphate Sulfate Chloride	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL100	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08	Perchlorate	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL100	MW-4-5 MW-4-4 MW-4-3 MW-4-1** EB-03-4/24/08	Perchlorate	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL100

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

June 27, 2008

505 King Avenue, Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on June 16, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18951:

SDG#

Fraction

P0801414, P0801271

N-Nitrosodimethylamine, Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

		1

Date 10 Nitro Circum selection Circum sel				S																							22
Tobo Celera selection Tobo Celera selection Tobo Celera selection Tobo Celera selection Tobo Celera selection Tobo Celera selection Tobo Celera Tobo Celer				8																							1-1
### Cook Clear select) DATE Cook				S																							o
### Cook Clear select) DATE Cook				8							 	 	<u> </u>														0
### Attachment 1 Total Claims select) DATE DATE Summer Condition C											 <u> </u>	<u> </u>															o
### Attachment 1 Total Claims select) DATE DATE Summer Condition C				8															 	 							0
Atlandment 1 Addresses 1 Addresses 1 Addresses 2 Addresses 2 Addresses 3 Address 3				_							 		-				 _										0
Atlandment 1 Addresses 1 Addresses 1 Addresses 2 Addresses 2 Addresses 3 Address 3				~							 						 		 								0
Attachment 1 Total Circlent select) LDC #18951 (Battelle-San Diego / NASA JPL)	l.		,						\exists			<u> </u>		<u> </u>													0
DATE DATE DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VI) RECD DATE Samines Cr(VII) RECD DATE Samines Cr(VII) RECD DATE Samines Cr(VII) RECD Cr(Coto G) C				~					_		 						 	 	 		_						0
10/090 (cilient select) 10/090 (cilient									\dashv																		Н
10/19/0 cilent selecy Altrochment 1 10/19/0 cilent selecy Altrochment 1 10/19/0 cilent selecy Altrochment 1 10/19/0 cilent selecy Altrochment 1 10/19/0 cilent 1 1 1 1 1 1 1 1 1				_							 	 	-						 								\vdash
10090 cilient solect Compared Compa				-																							0
Total Circle Select) Total Circle Select) Total Circle Selection				-																							0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (ST) N S W S W S W N S W S W N S W S W O6/16/08 07/08/08 3 0 8 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 0 0 0																									 		0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (ST) N S W S W S W N S W S W N S W S W O6/16/08 07/08/08 3 0 8 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 0 0 0	[3																									0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (ST) N S W S W S W N S W S W N S W S W O6/16/08 07/08/08 3 0 8 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 0 0 0		5									 														 		0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (ST) N S W S W S W N S W S W N S W S W O6/16/08 07/08/08 3 0 8 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 0 0 0	3	3																									
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (\$21) (7796A) N S W S W S W N S W S W O6/16/08 07/08/08 1 0 1 0 1 O6/16/08 07/08/08 0 0 1 0 1 O6/16/08 07/08/08 0 0 1 0 1 O6/16/08 07/08/08 0 0 1 0 1 O6/16/08 07/08/08 0 0 1 0 0 1 O6/16/08 07/08/08 0 0 0 1 0 0 1 O6/16/08 07/08/08 0 0 0 1 0 0 1 O6/16/08 07/08/08 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0		Ž								 	 																0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (ST) N S W S W S W N S W S W N S W S W O6/16/08 07/08/08 3 0 8 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 O6/16/08 07/08/08 0 0 0 1 0 0 0 0		စ္က																									0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0	_ ;	<u>ə</u>																									0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0	ent			8														 -					 		 		0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0	ch G	ဂို				П																					0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0	Atta	≗		3																							0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0		att																									0
10/90 (client select) DATE DATE Samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S W OG/16/08 07/08/08 1 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 1 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 1 0 0 OG/16/08 07/08/08 0 0 0 1 0 0 0 0 0	Ĺ	ן פ		Χ									<u> </u>														0
10/90 (client select) DATE DATE samines Cr(VI) REC'D DUE (521) (7196A) W S W S W S O O O O O O O O O O O O O O	1	ر در ا		S																							0
10/90 (client select) DATE DATE samines Cr(VI) REC'D DUE (521) (7196A) W S W S 06/16/08 07/08/08 1 0 7 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0		<u> </u>		Α																							0
10/90 (client select) DATE DATE samines Cr(VI) REC'D DUE (521) (7196A) W S W S 06/16/08 07/08/08 1 0 7 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0		# ا		S																							0
10/90 (client select) DATE DATE samines Cr(VI) REC'D DUE (521) (7196A) W S W S 06/16/08 07/08/08 1 0 7 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 06/16/08 07/08/08 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0		3		W																							0
10/90 (client select) DATE DATE samines REC'D DUE (521) W S 06/16/08 07/08/08 3 0 06/16/08 07/08/08 1 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0	-		VI)	S	0	0	0	0																			0
10/90 (client select) DATE DATE samines REC'D DUE (521) W S 06/16/08 07/08/08 3 0 06/16/08 07/08/08 1 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0 06/16/08 07/08/08 0 0			Cr.(719	≷	8	1	7	1																			17
10/90 (client selection (3) DATE			ro- ines ?1)	S	0	0	0	0.																			0
10/90 (client selection (3) DATE			Nit sam	W	3	Ļ	Ψ-	0																			5
700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		elect			3/08	3/08	3/08	3/08																			
N		int s	E PA	-	0//0	30/20	02/08	07/0																			
R P P P P P P P P P P P P P P P P P P P		<u>5</u>	шΩ		80,	80	80/	80,											 								
		80	DAT		6/16	6/16	6/16	6/16																			
				. T. V.	0	0	0	0											 			-			-		
		ا		-	4	4	, _	—																			
214328 SDG# SSDG# D80141 D80127 D80127 D80127 D80127		432	SDG#	Soil	P0801414	P0801414	P0801271	P0801271																			/LR
SDG# Water/Soil P0801414 P0801414 P0801271 P0801271 P0801271		02	S	/ater	P08	P.88	P08	P08																			
Matrix: A A B B B B B B Cotal			DC	Matri	<	∢	В	В																			otal

NASA JPL Data Validation Reports LDC# 18951

Hexavalent Chromium

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801414

Sample Identification

MW-24-5

MW-24-4

MW-24-3

MW-24-2

MW-24-1**

EB-13-5/13/08

DUPE-4-2Q08

MW-24-5MS

MW-24-5MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-13-5/13/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801414

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801414

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801271

Sample Identification

MW-17-5

MW-17-4

MW-17-3

MW-17-2

MW-17-1**

EB-07-5/1/08

MW-17-4MS

MW-17-4MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-07-5/1/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801271

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801271

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18951

N-Nitrosodimethylamine

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Nitrosamines

Validation Level:

EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801414

Sample Identification

MW-24-1**

DUPE-4-2Q08

MW-24-1MS

MW-24-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 521 for Nitrosamines.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance analysis was not required by the method.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

The percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No nitrosamines were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-24-1MS/MSD (MW-24-1**)	N-Nitrosodimethylamine	59 (70-130)	64 (70-130)	-	J (all detects) UJ (all non-detects)	А

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No nitrosamines were detected in any of the samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Nitrosamines - Data Qualification Summary - SDG P0801414

SDG	Sample	Compound	Flag	A or P	Reason
P0801414	MW-24-1**	N-Nitrosodimethylamine	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL

Nitrosamines - Laboratory Blank Data Qualification Summary - SDG P0801414

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Nitrosamines

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801271

Sample Identification

MW-17-4

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 521 for Nitrosamines.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance analysis was not required by the method.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

The percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No nitrosamines were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL

Nitrosamines - Data Qualification Summary - SDG P0801271

No Sample Data Qualified in this SDG

NASA JPL

Nitrosamines - Laboratory Blank Data Qualification Summary - SDG P0801271

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 16, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18955:

<u>SDG #</u> <u>Fraction</u>

JPL103 Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III and IV guidelines. The analyses were validated using the following documents, as applicable to each method:

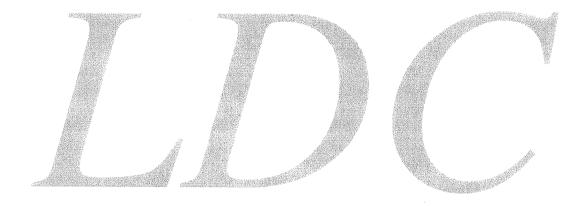
- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist


June 26, 2008

18955ST.wpd

ĪĒ								_						_	_	-						-			_	_						_		T	<u> </u>
			S	_			_																\dashv	_	_	_				\dashv	_		_	_	62
			≥																																
			S										,																						
		ŀ	3	7		_	┪																								コ			寸	
			-	\dashv		-	\dashv								-	-	\dashv	-					-				\dashv	-			-		-	\dashv	
	٠.	}	S	_	_	_	_									_	-	\dashv						\dashv	_	_		_		\dashv	-		-	-	—
			≥			_										_								_		_				_	_	_	_		의
			S																																0
			≥							Ċ																									0
	5 47 1		S																																0
		Ì	≥			\dashv	\neg																												
				\dashv		-+									_			-													\dashv		_		
		ŀ	S	\dashv	-	\dashv	_			Н							_							-				_			ᅱ		-	\dashv	-
			≥			_	_										_															_	_	\dashv	_
			လ																														_		<u></u>
			≥																																의
			S														_]																		
	JPL)		3																																0
	5		S			$\neg \dagger$						-																							0
	/NASA		3														_						Н												0
	Ž		_	_		-				\vdash	_		-	_																				-	0
	1	TDS (160.1)	S	0	0	_								_									\vdash								-				$-\parallel$
	(Battelle-San Diego		≷	9	Ψ.		_												_										_						
-	ă	CLO ₄ (314.0)	တ	0	0																														٥
ent	E	ું છે	≥	7	-																														8
Attachment 1	တို		S	0	0																														0
\tta	 e	pH (150.1)	3	9	-																														7
	tte		S	0	0	_					 	┢																							0
	Ba	NO ₃ -N NO ₂ -N (300.0)	\vdash		NUMBER OF STREET		_	_	_			_				_		-										-							8
	ம		≯	7	T			_	-	-				\vdash				_	H		-	_	_			\vdash			-	_					Н
	362	CI,SO ₄ , O-PO ₄ (300.0)	S	0	AND ADDRESS			_	_	_		ļ		_	_							ļ				_				_					릐
	#1895		≯	7	1														L	_												_			8
	ပ်	Alk. (310.1)	S	0	0																														٥
	CDC	AI (310	8	9	1																														~
			S	0	0																														0
		Metals (200.8 /200.7)	W	7	=			<u> </u>	 	T			_													\Box									8
					Service and the	\dashv			╁╌						┢	-		-	_		-			_				┢				-			0
		VOA (524.2)	S	0	2000					├-	_			-				<u> </u>		<u> </u>	_	-			_		-	_	_			-	Н		-
	æ	(5	≥	80	-				_		_	_		<u> </u>						<u> </u>	_	_	-					ļ		_					6
	elec	(3) DATE DUE		8/08	80/8																														
	10/90 (client select)	2 4 5 1		06/16/08 07/08/08	06/16/08 07/08/08																														
	(clie	0		80	80																														
	06/	DATE REC'D		/16/	/16/																														
	2			90	8				<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>						_	_	_	▙		_		_	_	_	ļ			<u> </u>		
									İ																										
Ϋ́	20	31	_	33	23																														
age	143	SDG#	r/So	JPL103	JPL103																														T/LR
923 pages-EX	PO 214320	"	Water/Soil	🛓	٦																														
6										1																									
		LDC	Matrix:	∀	A	H	Т		T	\vdash		Г	T	Г								Γ	T												Total
			Σ	۱ "	1	ıl		1	1	1	l		1				l		1	l	1	I		l		1	L	L				<u></u>			ഥ

NASA JPL Data Validation Reports LDC# 18955

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 30, 2008

LDC Report Date:

June 24, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL103

Sample Identification

MW-20-5

MW-20-4

MW-20-3

MW-20-2**

MW-20-1

EB-06-04/30/08

TB-06-04/30/08

MW-20-1MS

MW-20-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-06-04/30/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-06-04/30/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-11-5/8/08	Chloromethane	0.45

NASA JPL Volatiles - Data Qualification Summary - SDG JPL103

No Sample Data Qualified in this SDG

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL103

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18955

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 30, 2008

LDC Report Date:

June 19, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL103

Sample Identification

MW-20-5

MW-20-4

MW-20-3

MW-20-2**

MW-20-1

EB-06-04/30/08

MW-20-1MS

MW-20-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-06-04/30/08 was identified as an equipment blank. No metal contaminants were found in this blank.

NASA JPL Metals - Data Qualification Summary - SDG JPL103

No Sample Data Qualified in this SDG

NASA JPL
Metals - Laboratory Blank Data Qualification Summary - SDG JPL103

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18955

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 30, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL103

Sample Identification

MW-20-5

MW-20-4

MW-20-3

MW-20-2**

MW-20-1

EB-06-04/30/08

MW-20-1MS

MW-20-1MSD

MW-20-1DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-20-1MS/MSD (All samples in SDG JPL103)	Orthophosphate	88 (90-110)	89 (90-110)	-	J (all detects) UJ (all non-detects)	A
MW-20-1MS/MSD (All samples in SDG JPL103)	Perchlorate	127 (80-120)	129 (80-120)	•	J (all detects)	Α

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-06-04/30/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (units)
EB-06-04/30/08	рН	7.7

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL103

SDG	Sample	Analyte	Flag	A or P	Reason
JPL103	MW-20-5 MW-20-4 MW-20-3 MW-20-2** MW-20-1 EB-06-04/30/08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL103	MW-20-5 MW-20-4 MW-20-3 MW-20-2** MW-20-1 EB-06-04/30/08	Perchlorate	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL103

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle June 23, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie.

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 16, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18958:

SDG#	<u>Fraction</u>
JPL104	Volatiles, 1,4-Dioxane, Metals, Wet Chemistry

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

			S		Τ		Τ								Π	Π		Ī				Π	Ī					Г	Ī	Γ		Т	П		78
			>												<u> </u>			Γ	1			T			Г				T	T	Г		\Box	\Box	0
			S														Γ		<u> </u>	T								T					П	\Box	0
			≥									<u> </u>			T	T			T	T													П	\exists	o
			S										Γ		T		T	T	Г	T			<u> </u>								T		П		0
			3										T	T	T		Г			T								T	T	1	T	 	П	\dashv	0
			S		T									T			┢				†		T	T		ļ	-			 	T				
			≥																Г		Γ		┢						T	 	T	<u> </u>	\Box	\dashv	
			S	 	T								T					T	<u> </u>	T							┢┈	 	T	\vdash			H		0
			>	Ī									T	1				T			┢	T	T					-	T				H	\dashv	0
		ω ⊊	S	├	0				-			_			 			\vdash	╫	H	┢	┢	 		\vdash	<u> </u>	_		\vdash			<u> </u>	\vdash	\dashv	0
		TDS (160.1)		9	ROOM S													T			T	Г										T	\vdash	\dashv	1
			S	0	0									<u> </u>	T			Ħ		T	╁┈		Ħ		 			<u> </u>			-	\vdash	H	\dashv	0
	ž.	CLO ₄ (314.0)		~											Ī	†		T					T			\vdash						H	H	ᅱ	8
			s	1-			П							T				T								\vdash					_	\vdash	\Box	\dashv	0
	58 (Battelle-San Diego / NASA JPL)	pH (150.1)		9			П						\vdash	T	T		_	\vdash		<u> </u>	\vdash			 				-	H	\vdash	T	\vdash	H	\dashv	7
	3		s	_	1000																						_	H	H			<u> </u>	H	\dashv	0
	AS.	O-PO ₄ (365.2)	≥	7						П				T	T		<u> </u>			\vdash								┢┈╴					$\vdash \vdash$	\dashv	8
	Z		S	一	SHOW SERVICE								<u> </u>		T					╁			<u> </u>					\vdash					H	\dashv	0
	go	NO ₂ -N (354.1)	3	2	E 1								\vdash	\vdash						T		<u> </u>									<u> </u>		H	\dashv	9
1)ie		S		22263								Г						H	<u> </u>	-		H	 							-		\vdash	\dashv	0
ent	E.	NO ₃ -N (353.2)	≥	5															\vdash			\vdash							H					\dashv	9
Attachment 1	-Se		S	0	680W										<u> </u>														 				H	\dashv	
Atta	əlle	NO ₃ / NO ₃ -N (353.2)	≥	2	(MAX)										<u> </u>																		$\vdash \vdash$	\dashv	9
	atte		S	-	0.00																Н			Н									\Box	\dashv	0
	(B	CI,SO4, (300.0)		_	Ŧ																\vdash											\vdash		\forall	8
	958		S		0																												\Box	十	ᅦ
	189	Alk. (310.1)	*	5	See See			٦										-						П									\Box	\dashv	9
	LDC #189		S	0	\$65.20E			\dashv							-								_										\dashv	\dashv	
		Metals (200.8 /200.7)	8	6	100 2000									<u> </u>																			\dashv	\forall	<u></u>
		ane OC)	S	0	0				┪																								\dashv	\forall	
		1,4- Dioxane (8270C)	W	~	0									·													H						\dashv	十	ᆌ
		A (5	S	0	0					\neg																\neg							\dashv	十	ᆌ
	a 31. <u>a</u> a	VOA (524.2)	8	9	I						\dashv														一	\dashv							$\neg \dagger$	\dashv	7
	10/90 (client select)		1,53 123	80/								一														\dashv	1						\dashv	_	\dashv
	nt se	(3) DATE DUE		7/01	7/01																													l	
2 Week TAT	Clie			06/16/08 07/01/08	06/16/08 07/01/08			\dashv	-		\dashv	\dashv				\dashv			_					\dashv		+	\dashv	\dashv					\dashv	+	\dashv
Wee	06/0	DATE REC'D		116/	/16/(
7	7			9	90		_	_	4	_	-	_					_		_		_			_	_	_				_			_	\downarrow	4
Ä																							Ì		ĺ										
ages	1320	%DG#	ij	104	5		l									l																			~
1,057 pages-EX	PO 214320	SD	Water/Soil	JPL104	JPL104																		ļ								Ì	ļ			T/LR
5,	∡																																		
			Matrix:	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv			\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	릚
		רםכ	ž	٧	۷																														Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL104

Sample Identification

MW-17-5

MW-17-4

MW-17-3

MW-17-2

MW-17-1**

EB-07-5/1/08

TB-07-5/1/08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-07-5/1/08	All TCL compounds	A headspace was apparent in the sample containers.	There should be no headspace in the sample containers.	J (all detects) UJ (all non-detects)	Р

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S050708MVOW71	cis-1,3-Dichloropropene	148 (60-140)	All samples in SDG JPL104	J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-07-5/1/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-07-5/1/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-07-5/1/08	Chloromethane	0.62

NASA JPL Volatiles - Data Qualification Summary - SDG JPL104

SDG	Sample	Compound	Flag	A or P	Reason
JPL104	TB-07-5/1/08	All TCL compounds	J (all detects) UJ (all non-detects)	Р	Sample condition
JPL104	MW-17-5 MW-17-4 MW-17-3 MW-17-2 MW-17-1** EB-07-5/1/08 TB-07-5/1/08	cis-1,3-Dichloropropene	J (all detects)	P	Laboratory control samples (%R)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

1,4-Dioxane

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL104

Sample Identification

MW-17-4

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for 1,4-Dioxane.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0%.

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No 1,4-Dioxane was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL

1,4-Dioxane - Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

NASA JPL

1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL104

Sample Identification

MW-17-5

MW-17-4

MW-17-3

MW-17-2

MW-17-1**

EB-07-5/1/08

EB-07-5/1/08MS

EB-07-5/1/08MSD

MW-17-5MS

MW-17-5MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-07-5/1/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-07-5/1/08	Chromium	1.93

NASA JPL Metals - Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 1, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL104

Sample Identification

MW-17-5

MW-17-4

MW-17-3

MW-17-2

MW-17-1**

EB-07-5/1/08

MW-17-5MS

MW-17-5MSD

MW-17-4DUP

MW-17-1MS

MW-17-1MSD

EB-07-5/1/08DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate as Nitrogen and Nitrate/Nitrite as Nitrogen, EPA Method 354.1 for Nitrite as Nitrogen, and EPA Method 365.2 for Orthophosphate as Phosphate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-17-1MS/MSD (All samples in SDG JPL104)	Chloride	87 (90-110)	87 (90-110)	-	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

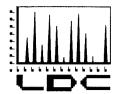
Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-07-5/1/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:


Equipment Blank ID	Analyte	Concentration
EB-07-5/1/08	pH Nitrate/Nitrite as N	6.6 units 0.068 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL104

SDG	Sample	Analyte	Flag	A or P	Reason
JPL104	MW-17-5 MW-17-4 MW-17-3 MW-17-2 MW-17-1** EB-07-5/1/08	Chloride	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL104

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

June 23, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201

ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 17, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18965:

<u>SDG #</u> <u>Fraction</u>

JPL107 Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

## RATE DATE VOX Residue ALC FOX COX	(3) Metals DATE VOA (200.8 DUE (524.2) (200.7) W S W S O7/02/08 7 0 10 0	losos (pariel	>a - - - - - - - - - - - -	うくりせいこう	Ĵ				
N	S	NO ₂ -N NO ₂ -N (300.0)	CLO ₄ (314.0)	DS 60.1)					
	06/17/08 07/02/08 7 0 10 0 7 0	8	s M	8	N S	s M	*	w s	\vdash
		0 8 0	0 9 0	0					₩-
				├—					
		\dashv							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 7, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL107

Sample Identification

MW-12-5

MW-12-4

MW-12-3

MW-12-2

MW-12-1

EB-10-05/07/08

TB-10-05/07/08

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
5050908MVOWY1	cis-1,3-Dichloropropene	150 (60-140)	All samples in SDG JPL107	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-10-05/07/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-10-05/07/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL107

SDG	Sample	Compound	Flag	A or P	Reason
JPL107	MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1 EB-10-05/07/08 TB-10-05/07/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL107

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 7, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL107

Sample Identification

MW-12-5

MW-12-4

MW-12-3

MW-12-2

MW-12-1

EB-10-05/07/08

MW-12-5MS

MW-12-5MSD

EB-10-05/07/08MS

EB-10-05/07/08MSD

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/08	ICV	Potassium	116.3 (90-110)	MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1 EB-10-05/07/08 MW-12-5MS MW-12-5MSD	J+ (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-10-05/07/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-10-05/07/08	Chromium	1.53

NASA JPL Metals - Data Qualification Summary - SDG JPL107

SDG	Sample	Analyte	Flag	A or P	Reason
0000	MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1 EB-10-05/07/08	Potassium	J+ (all detects)	P	Calibration (%R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL107

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 7, 2008

LDC Report Date:

June 20, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL107

Sample Identification

MW-12-5

MW-12-4

MW-12-3

MW-12-2

MW-12-1

EB-10-05/07/08

MW-12-5DUP

MW-12-4DUP

MW-12-1MS

MW-12-1MSD

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-12-1MS/MSD (All samples in SDG	Nitrate as N	87 (90-110)	87 (90-110)	-	J (all detects)	А
JPL107)	Orthophosphate	86 (90-110)	87 (90-110)		UJ (all non-detects) J (all detects) UJ (all non-detects)	

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-10-05/07/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-10-05/07/08	рН	6.8 units

NASA JPL
Wet Chemistry - Data Qualification Summary - SDG JPL107

SDG	Sample	Analyte	Flag	A or P	Reason
JPL-107	MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1 EB-10-05/07/08	Nitrate as N Orthophosphate	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL107

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

June 26, 2008

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on June 17, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18967:

SDG#	<u>Fraction</u>
JPL101, JPL102	Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III and IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

		S																													ot	122
		≥		$_$ \mathbb{I}	\prod																										Ш	0
		S																														의
		3																														0
		S																				·										0
		3																														0
		S	1																													0
		≥	1																													0
		S																														0
		3		Ì																												0
		S	\dashv									-	Т					-														0
		≥																														0
		S																														0
		≥																														0
		S		目																												0
		3		╗	T																											0
(Battelle-San Diego / NASA JPL)		S																														0
AS		≥																														0
Z	S (1.1)	S	0	0	0																											0
g	TDS (160.1)	3	5	-	^					Γ																						13
)ie		S	0	0	0																											0
ڃ	CLO ₄ (314.0)	3	7	Ŧ	®																											16
ဖြို	1.0	S	0	0	0																											٥
elle	pH (150.1)	≥	5	1	7																									<u> </u>		13
att	2-2-0.0°	S	0	0	0															_												
	NO ₃ -N NO ₂ -N (300.0)	≥	7	-	∞																						L					16
196	0,00	S	0	0	0																									<u> </u>		٥
148	CI,SO ₄ , O-PO ₄ (300.0)	3	7	1	æ																											16
LDC #18967	Alk. (310.1)	S	0	0	0																								L			٥
2	3,6	3	9	1	7																			<u>.</u>			<u> </u>	_				4
	als 0.8 0.7)	S	0	0	0																									_		٥
	Metals (200.8 /200.7)	≥	6	1	8																				L	ļ	L			L		92
	VOA (524.2)	S	0	0	0												<u> </u>	<u> </u>								_	L		<u> </u>		<u> </u>	의
	VC (52,	≥	9	-	6						_					<u> </u>				<u></u>	<u></u>		ļ				_			<u> </u>	L	16
elect	~ ≞ □		1/08	1/08	1/08																											
10/90 (client select)	(3) DATE DUE		07/01/08	07/01/08	07/01/08		l											•														
) is	шΩ														Γ																	
06/0	DATE REC'D		06/17/08	06/17/08	06/17/08																											
			0	0	0		┢	╁	\dagger	 		╁	t	T	\vdash	t		1	┢		 	\vdash	T		T	T	T			T	1	
2			1	_	12																											_
PO 214320	\$DQ\$	Water/Soil	JPL101	JPL101	JPL102																											T/LR
8		Wate	ار	د	٦																											
						_		-	-	1		-	-	-	_		-	-	L		L	-	_	-	-	-	\vdash	-	-	_	\vdash	la la
	CDC	Matrix:	٧	٧	8																							L			<u> </u>	Total

Attachment 1

1,681 pages-EX

2 WEEK TAT

NASA JPL Data Validation Reports LDC# 18967

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 28, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL101

Sample Identification

MW-21-5

MW-21-4

MW-21-3

MW-21-2**

MW-21-1

EB-04-4/28/08

TB-04-4/28/08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
4/30/08	cis-1,3-Dichloropropene	34.33	All samples in SDG JPL101	J (all detects) UJ (all non-detects)	Р

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-04-4/28/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-04-4/28/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL101

SDG	Sample	Compound	Flag	A or P	Reason
JPL101	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08 TB-04-4/28/08	cis-1,3-Dichloropropene	J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL101

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 29, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL102

Sample Identification

MW-19-5

MW-19-4

MW-19-3

MW-19-2

MW-19-1

EB-05-04/29/08

TB-05-04/29/08

MW-19-1MS

MW-19-1MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-19-1MS/MSD (MW-19-1)	Dichlorodifluoromethane	59 (60-140)	-	-	J (all detects) UJ (all non-detects)	А

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

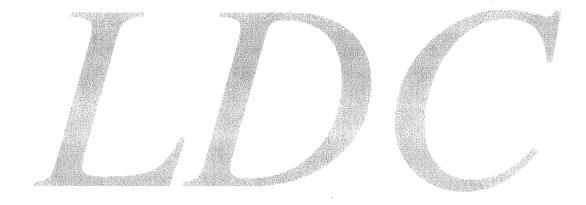
XVII. Field Blanks

Sample TB-05-04/29/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-05-04/29/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL102

SDG	Sample	Compound	Flag	A or P	Reason
JPL102	MW-19-1	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)


NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL102

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18967

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 28, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL101

Sample Identification

MW-21-5

MW-21-4

MW-21-3

MW-21-2**

MW-21-1

EB-04-4/28/08

MW-21-5MS

MW-21-5MSD

EB-04-4/28/08MS

EB-04-4/28/08MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/iD	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/9/08	CCV3	Chromium	87.0 (90-110)	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08 EB-04-4/28/08MS EB-04-4/28/08MSD	J (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-21-5MS/MSD (All samples in SDG JPL101)	Calcium	56.2 (70-130)	60.4 (70-130)	-	J (all detects) UJ (all non-detects)	А

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-04-4/28/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-04-4/28/08	Chromium	1.80

NASA JPL Metals - Data Qualification Summary - SDG JPL101

SDG	Sample	Analyte	Flag	A or P	Reason
JPL101	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08	Chromium	J (all detects) UJ (all non-detects)	Р	Calibration (%R)
JPL101	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08	Calcium	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL101

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 29, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL102

Sample Identification

MW-19-5

MW-19-4

MW-19-3

MW-19-2

MW-19-1

EB-05-04/29/08

MW-19-1MS

MW-19-1MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/9/08	CCV3	Chromium	87.0 (90-110)	РВ	J (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-19-1MS/MSD (All samples in SDG JPL102)	Calcium	65.8 (70-130)	-	-	J (all detects) UJ (all non-detects)	А

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-05-04/29/08 was identified as an equipment blank. No metal contaminants were found in this blank.

NASA JPL Metals - Data Qualification Summary - SDG JPL102

SDG	Sample	Analyte	Flag	A or P	Reason
JPL102	MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1 EB-05-04/29/08	Calcium	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL102

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18967

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 28, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL101

Sample Identification

MW-21-5

MW-21-4

MW-21-3

MW-21-2**

MW-21-1

EB-04-4/28/08

MW-21-5DUP

MW-21-4MS

MW-21-4MSD

MW-21-3MS

MW-21-3MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/5/08	CCV3	Perchlorate	134.7 (85-115)	MW-21-4 MW-21-3 EB-04-4/28/08 MW-21-3MS MW-21-3MSD	J (all detects)	₽
5/19/08	CCV1	Perchlorate	117.1 (85-115)	MW-21-1	J (all detects)	Р
5/20/08	CCV2	Perchlorate	121 (85-115)	MW-21-1	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-21-4MS/MSD (All samples in SDG JPL101)	Orthophosphate	87 (90-110)	87 (90-110)	-	J (all detects) UJ (all non-detects)	А

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-21-3MS/MSD (All samples in SDG JPL101)	Perchlorate	137 (80-120)	145 (80-120)	-	J (all detects)	A

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-04-4/28/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-04-4/28/08	pH Bicarbonate alkalinity	6.3 units 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL101

SDG	Sample	Anaiyte	Flag	A or P	Reason
JPL101	MW-21-4 MW-21-3 EB-04-4/28/08 MW-21-1	Perchlorate	J (all detects)	Р	Calibration (CCV %R)
JPL101	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08	Orthophosphate	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL101	MW-21-5 MW-21-4 MW-21-3 MW-21-2** MW-21-1 EB-04-4/28/08	Perchlorate	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL101

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

April 29, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL102

Sample Identification

MW-19-5

MW-19-4

MW-19-3

MW-19-2

MW-19-1

EB-05-04/29/08

MW-19-1MS

MW-19-1MSD

MW-19-1DUP

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-19-1MS/MSD (All samples in SDG JPL102)	Orthophosphate	87 (90-110)	88 (90-110)	•	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

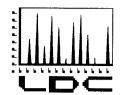
Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-05-04/29/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:


Equipment Blank ID	Analyte	Concentration
EB-05-04/29/08	pH Bicarbonate alkalinity	7.7 units 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL102

SDG	Sample	Analyte	Flag	A or P	Reason
JPL102	MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1 EB-05-04/29/08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL102

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

June 30, 2008

Battelle

505 King Avenue Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on June 19, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18979:

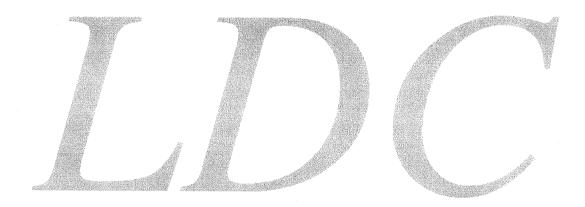
SDG#	<u>Fraction</u>
JPL105, JPL106, JPL108	Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III and IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,


Erlinda T. Rauto

Operations Manager/Senior Chemist

			S	┿																															206
			≥	 		_	-	<u> </u>	_		_	_	L	_	_	<u> </u>	_	_	_		_	_							_		_			_	c
			S	⊢	<u> </u>	-				_	_	_	_	<u> </u>	_	<u> </u>		ļ	_	_													_	_	c
			≥		_	_	<u> </u>			_				_				_	_	<u> </u>		<u> </u>				ļ			L			_	_		٥
			S		<u> </u>	_				ļ		_		_	<u> </u>		_	_		_									_						c
			≥	ļ	<u> </u>		_	ļ		ļ			L	_	<u> </u>	<u> </u>		<u> </u>				ļ				<u> </u>					_				c
			S		-	_	_	_	ļ	_				\vdash	_		_							<u> </u>		_	ļ		_	_					<u> </u>
			≥	_	_	-	<u> </u>	ļ	_								_	_	<u> </u>			_				ļ				_					<u> </u> c
			S	_	-	<u> </u>	<u> </u>	-	_	<u> </u>		_	ļ	_									_							-		_		_	c
			3				L						ļ			<u> </u>							L												L
			S	┢	ļ		-					_	_				_												_	_				_	c
		<u> </u>	≥	-	_	_					_	_	_		_		_										_	_		_				<u> </u>	c
:		TDS (160.1)	8		┢	0	80						_				_		_			_							_	┡				<u> </u>	°
			3	┰	_	5			_	_					<u> </u>			_														_			2
	1	CLO ₄ (314.0)	S	-	0		0		<u> </u>			-	_	_	_	<u> </u>	<u> </u>	<u> </u>				<u> </u>		<u> </u>	L		_	<u> </u>	ļ	<u> </u>	_			L	0
	LDC #18979 (Battelle-San Diego / NASA JPL)		≥	_	_	\vdash			\vdash		_		<u> </u>		_	_	_					ļ		_	<u> </u>		<u> </u>			-	L	<u> </u>		<u> </u>	25
	SA	pH (150.1)	8	\vdash	\vdash	0			_	_	\vdash			_			_					-								_				_	0
	¥		3	8	-	9							-	\vdash					_												_			_	22
	70	NO ₂ -N (354.1)	8	-	'	'	<u> </u>						_																					_	0
	ieg		≥	0 7	'		<u> </u>							-															_	-			_	_	
nt 1	٥	NO ₃ -N (353.2)	8	\vdash	'	<u>'</u>	<u> </u>				_	<u> </u>		_	_									-			_		_						0
hme	Saı		8	0 7		' '	<u>'</u>								\vdash																				_
Attachment 1	- 9	NO ₃ / NO ₃ -N (353.2)	w s	7	<u> </u>	H	<u> </u>			_			_		_			_																	0
٨	itte		s v		0	0	0					┢	_					_																	0
	(Ba	NO ₃ -N NO ₂ -N (300.0)	×	-	6	_	-					_		<u> </u>																		_			17 (
	79		S	_	0	0	0							\vdash			_				-								-						0
	189	CI,SO4, (300.0)	×	6	6		-						<u> </u>					<u> </u>		-											_				56
	# (S	0	0	0								\vdash																					0
	DC.	Alk. (310.1)	W	8	7	9	Ŧ			Н					\vdash														-	_					22
			S	0	0	0	0	Н																						-					0
		Metals (200.8 /200.7)	>	1	8	6	-																												29
			S	0	0	0	0																												0
		VOA (524.2)	3	8	6	9	Ŧ													_															24
	lect)			80																											-				
S-EX	10/90 (client select)	(3) DATE DUE		07/03/08	07/03/08	07/03/08	07/03/08																												
2,691 pages-EX	clier								_											\dashv	\dashv			_	-	\dashv	\dashv								
691	06/	DATE REC'D		06/19/08	06/19/08	06/19/08	06/19/08																												
2,	-			8	90	90	90												_		_	-	_	4	_			_							ļ
TAT	PO 214320	\$DG#	Ϊ́	JPL105	JPL106	JPL108	JPL108																												ď
2 week TAT	227	SD	Water/Soil	릵	맆	뢰	JPL																			İ	ĺ								T/LR
2	₫		-200 at																		1														
		CDC	Matrix:	4	В			\vdash										\dashv	_	\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	_								Total
1		9	≥	1	ш	ပ	ပ					1				- 1		- 1	- 1		- 1		- 1	- 1			- 1	- 1			1	- 1	ı		ত

NASA JPL Data Validation Reports LDC# 18979

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 5, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL105

Sample Identification

MW-18-5

MW-18-4

MW-18-3

MW-18-2

MW-18-1

EB-08-05/05/08

DUPE-2-2Q08

TB-08-05/05/08

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-08-05/05/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	A

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S050708MVOWY1	cis-1,3-Dichloropropene	148 (60-140)	All samples in SDG JPL105	J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-18-1 and DUPE-2-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples.

XVII. Field Blanks

Sample TB-08-05/05/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-08-05/05/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL105

SDG	Sample	Compound	Flag	A or P	Reason
JPL105	TB-08-05/05/08	All TCL compounds	J (all detects) UJ (all non-detects)	А	Sample condition
JPL1 05	MW-18-5 MW-18-4 MW-18-3 MW-18-2 MW-18-1 EB-08-05/05/08 DUPE-2-2Q08 TB-08-05/05/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL105

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 6, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL106

Sample Identification

MW-3-5

MW-3-4

MW-3-3

MW-3-2

MW-3-1

EB-09-05/06/08

TB-09-05/06/08

MW-3-1MS

MW-3-1MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-09-05/06/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	A

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S050708MVOWY1	cis-1,3-Dichloropropene	148 (60-140)	All samples in SDG JPL100	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-09-05/06/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-09-05/06/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL106

SDG	Sample	Compound	Flag	A or P	Reason
JPL106	TB-09-05/06/08	All TCL compounds	J (all detects) UJ (all non-detects)	А	Sample condition
JPL106	MW-3-5 MW-3-4 MW-3-3 MW-3-2 MW-3-1 EB-09-05/06/08 TB-09-05/06/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL106

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 8, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL108

Sample Identification

MW-11-5**

MW-11-4

MW-11-3

MW-11-2

MW-11-1

EB-11-5/8/08

TB-11-5/8/08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S050908MVOWY1	cis-1,3-Dichloropropene	150 (60-140)	All samples in SDG JPL108	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

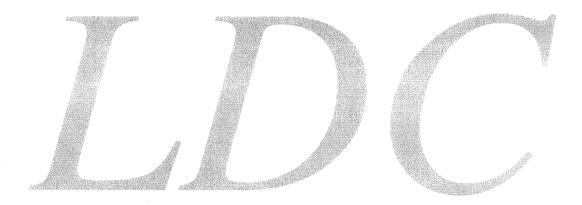
XVII. Field Blanks

Sample TB-11-5/8/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-11-5/8/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-11-5/8/08	Chloromethane	0.62

NASA JPL Volatiles - Data Qualification Summary - SDG JPL108


SDG	Sample	Compound	Flag	A or P	Reason
JPL108	MW-11-5** MW-11-4 MW-11-3 MW-11-2 MW-11-1 EB-11-5/8/08 TB-11-5/8/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL108

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18979

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 5, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL105

Sample Identification

MW-18-5

MW-18-4

MW-18-3

MW-18-2

MW-18-1

EB-08-05/05/08

DUPE-2-2Q08

MW-18-5MS

MW-18-5MSD

DUPE-2-2Q08MS

DUPE-2-2Q08MSD

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/08	ICV	Potassium	116.3 (90-110)	MW-18-5 MW-18-4 MW-18-3 MW-18-2 MW-18-1 EB-08-05/05/08 DUPE-2-2Q08 MW-18-5MS MW-18-5MSD PB	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-18-1 and DUPE-2-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-18-1	DUPE-2-2Q08	RPD
Calcium	53900	54900	2
Chromium	4.09	2.19	61
Iron	429	312	32
Magnesium	18200	18500	2
Sodium	18100	18900	4

XIV. Field Blanks

Sample EB-08-05/05/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-08-05/05/08	Chromium	2.30

NASA JPL Metals - Data Qualification Summary - SDG JPL105

SDG	Sample	Analyte	Flag	A or P	Reason
JPL105	MW-18-5 MW-18-4 MW-18-3 MW-18-2 MW-18-1 EB-08-05/05/08 DUPE-2-2Q08	Potassium	J (all detects)	Р	Calibration (ICV %R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL105

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 6, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL106

Sample Identification

MW-3-5

MW-3-4

MW-3-3

MW-3-2

MW-3-1

EB-09-05/06/08

MW-3-1MS

MW-3-1MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/08	ICV	Potassium	116.3 (90-110)	All samples in SDG JPL106	J (all detects)	Р
6/23/08	CCV3	Iron	141.6 (90-110)	MW-3-1MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-09-05/06/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-09-05/06/08	Chromium	1.49

NASA JPL Metals - Data Qualification Summary - SDG JPL106

SDG	Sample	Analyte	Flag	A or P	Reason
JPL106	MW-3-5 MW-3-4 MW-3-3 MW-3-2 MW-3-1 EB-09-05/06/08	Potassium	J (all detects)	Р	Calibration (ICV %R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL106

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 8, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL108

Sample Identification

MW-11-5**

MW-11-4

MW-11-3

MW-11-2

MW-11-1

EB-11-5/8/08

MW-11-5MS

MW-11-5MSD

EB-11-5/8/08MS

EB-11-5/8/08MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/08	ICV	Potassium	116.3 (90-110)	MW-11-5** MW-11-4 MW-11-3 MW-11-2 MW-11-1 EB-11-5/8/08 MW-11-5MS MW-11-5MSD	J (all detects)	Р
6/5/08	CCV9	Calcium Iron Potassium Sodium	88.6 (90-110) 88.7 (90-110) 87.2 (90-110) 86.2 (90-110)	EB-11-5/8/08	J (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

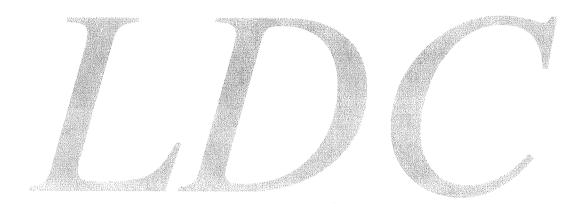
XIV. Field Blanks

Sample EB-11-5/8/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-11-5/8/08	Chromium	1.73

NASA JPL Metals - Data Qualification Summary - SDG JPL108

SDG	Sample	Analyte	Flag	A or P	Reason
JPL108	MW-11-5** MW-11-4 MW-11-3 MW-11-2 MW-11-1 EB-11-5/8/08	Potassium	J (all detects)	Р	Calibration (ICV %R)
JPL108	EB-11-5/8/08	Calcium Iron Potassium Sodium	J (all detects) UJ (all non-detects)	Р	Calibration (CCV %R)


NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL108

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 18979

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 5, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL105

Sample Identification

MW-18-5

MW-18-4

MW-18-3

MW-18-2

MW-18-1

EB-08-05/05/08

DUPE-2-2Q08

MW-18-5DUP

MW-18-1MS

MW-18-1MSD

DUPE-2-2Q08MS

DUPE-2-2Q08MSD

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Phosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate/Nitrite as Nitrogen, Nitrate as Nitrogen, and EPA Method 354.1 for Nitrite as Nitrogen.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-18-1 and DUPE-2-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-18-1	RPD	
Bicarbonate alkalinity	160	160	0
Chloride	18	18	0
Nitrite/Nitrate as N	2.3	2.3	0
Nitrate as N	2.3	2.3	0
Sulfate	41	41	0
Total dissolved solids	260	250	4

	Concentra		
Analyte	MW-4-1**	DUPE-1-2Q08	RPD
рН	6.8	7.1	4

X. Field Blanks

Sample EB-08-05/05/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-08-05/05/08	pH Chloride Bicarbonate alkalinity Nitrate/Nitrite as N	6.6 units 2.7 mg/L 2.0 mg/L 0.052 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL105

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL105

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 6, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL106

Sample Identification

MW-3-5

MW-3-4

MW-3-3

MW-3-2

MW-3-1

EB-09-05/06/08

MW-3-1MS

MW-3-1MSD

MW-3-1DUP

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-09-05/06/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-09-05/06/08	pH Bicarbonate alkalinity	7.1 units 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL106

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL106

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 8, 2008

LDC Report Date:

June 23, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL108

Sample Identification

MW-11-5 ★ ★

MW-11-4

MW-11-3

MW-11-2

MW-11-1

EB-11-5/8/08

MW-11-5DUP

MW-11-1MS

MW-11-1MSD

EB-11-5/8/08DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-11-1MS/MSD (All samples in SDG JPL108)	Orthophosphate	89 (90-110)	-	-	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

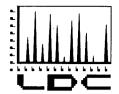
Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-11-5/8/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:


Equipment Blank ID	Analyte	Concentration				
EB-11-5/8/08	pH Total dissolved solids	6.8 units 3.0 mg/L				

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL108

SDG	Sample	Analyte	A or P	Reason	
JPL108	MW-11-5 MW-11-4 MW-11-3 MW-11-2 MW-11-1 EB-11-5/8/08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL108

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle June 27, 2008 505 King Avenue

Room 10-1-170

Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 24, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19005:

SDG#	<u>Fraction</u>
JPL109	Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

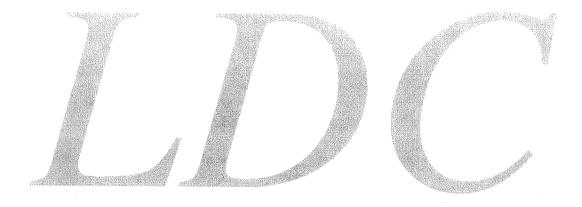
Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

								,	,																 						
		S	_	4	4																								_	_	78
		≥																											\Box		0
		တ																													0
		≥																													0
		S			T	Ì																									
		≥		1	T	1																							\exists	٦	0
		S		1	1	7												 _											\top		司
		3		十	+	\dashv		\vdash										 								_			\dashv	1	0
		5		\dashv	+	\dashv	 	<u> </u>		┢		-						 											\dashv		0
		-	+	+	+	\dashv						\vdash			-									-	 						
		≥	_	\bot	4	4	 	_	_	<u> </u>		_	_																\dashv	_	_
		S	-+	-	+	-		_																					\dashv		0
		≥	_	-	+	4		-		_															 				\dashv	_	
		S	_	_	4			<u> </u>	_																				\dashv	4	_
		≥		1	4	_																			 						0
-		တ		\perp	\downarrow								_																ightharpoonup		٥
르		≥		\perp																											0
LDC #19005 (Battelle-San Diego / NASA JPL)	TDS (160.1)	S	0																										\Box		٥
AS	TT (16	≥	7																												7
Z	,0 (0.	S	0																												
ရှိ	CLO ₄ (314.0)	3	6																												6
)ie		S	0	1	1																				 						
l L	pH (150.1)	3	<u></u>	1	1													 													
Sa		S		\dashv	\top						_																			7	ᆌ
ė	O-PO ₄ (300.0)	8	6	十	+							<u> </u>													-	ļ				\dashv	6
E E		S		+	+	\dashv	 -	-				-	┢	<u> </u>				 										\dashv			
Ba	NO ₃ -N NO ₂ -N (300.0)	3	6	\dashv	\dashv			\vdash		_		_		_				-											\vdash	_	6
35			0	+	+									_	_														\vdash	-	0
06	CI,SO4, (300.0)	S /	-+	+	+				-	_		<u> </u>	<u> </u>	_				 										-	\dashv		1
#	0.6	≯	<u></u>	+	+	4		_		<u> </u>				<u> </u>															\dashv	-	6
ူဗ္ဂ	Alk. (310.1)	S		+	\dashv	_		_	-	<u> </u>	_	<u> </u>																	\dashv	-	4
∥⊐∣		≥	<u></u>		4	_			_	_	ļ		_																\dashv	4	8
	Metals (200.8 /200.7)	S	의	_		_				ļ																				_	ᆀ
		≥	=	_	\perp	\dashv	 	<u> </u>			<u> </u>	_	<u> </u>		<u> </u>										 ļ	<u> </u>	<u> </u>				7
	VOA (524.2)	S			\perp	_		L	_	<u> </u>	<u> </u>	<u></u>													 <u> </u>	<u> </u>	<u></u>		\dashv	_	
▮ ੵ	V(≥	∞																										\Box		
elect			80/2																												
10/90 (client select)	(3) DATE DUE		07/02/08																												
Clie	0	-		_	7	\dashv	 						\vdash																		
06/0	DATE REC'D		06/24/08																												
3		-	8	_	4	\dashv	 																						\dashv	_	_
320	井	<u>=</u>	60																												
PO 214320	SDG#	Water/Soil	JPL 109																												T/LR
<u>8</u>		Wat	1																												
	TDC	Matrix:	-		-+		 		-			\vdash	\vdash		-	\dashv	-	 \dashv	-	-	-	-	-	\dashv	 	\vdash	Н	-	\dashv	\dashv	Total


Attachment 1

1,084 pages-EX

1 week TAT

NASA JPL Data Validation Reports LDC# 19005

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 12, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL109

Sample Identification

MW-23-5

MW-23-4

MW-23-3

MW-23-2

MW-23-1

EB-12-5/12/08

DUPE-3-2Q08

TB-12-5/12/08

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected in results in samples MW-23-5, MW-23-4, MW-23-3, and EB-12-5/12/08 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-23-2 and DUPE-3-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concent	ration (ug/L)					
Compound	MW-23-2	DUPE-3-2Q08	RPD				
Trichloroethene	0.30	0.27	11				

	Concentra	Concentration (ug/L)								
Compound	MW-23-2	MW-23-2 DUPE-3-2Q08								
Chloroform	0.50U	0.30	200							

XVII. Field Blanks

Sample TB-12-5/12/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-12-5/12/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-12-5/12/08	Chloromethane	0.31

NASA JPL Volatiles - Data Qualification Summary - SDG JPL109

No Sample Data Qualified in this SDG

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL109

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19005

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 12, 2008

LDC Report Date:

June 25, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL109

Sample Identification

MW-23-5

MW-23-4

MW-23-3

MW-23-2

MW-23-1

EB-12-5/12/08

DUPE-3-2Q08

MW-23-5MS

MW-23-5MSD

DUPE-3-2Q08MS

DUPE-3-2Q08MSD

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Potassium Sodium	124.3 (90-110) 115.1 (90-110)	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08 MW-23-5MS MW-23-5MSD	J (all detects) J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL109

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-23-4	Sodium	29500 ug/L	29500U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-23-3	Sodium	27400 ug/L	27400U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
DUPE-3-2Q08MS/MSD (All samples in SDG JPL109)	Arsenic	136.0 (70-130)	145.9 (70-130)	-	J (all detects)	A

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-23-2 and DUPE-3-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

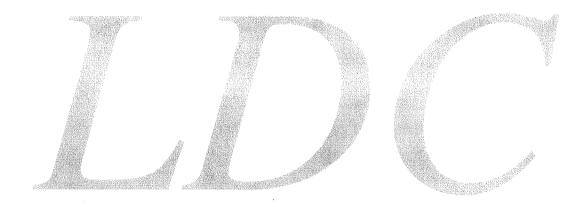
	Concentra	Concentration (ug/L)	
Compound	ompound MW-23-2 DUPE-3-2Q08		RPD
Calcium	101000	94600	7
Chromium	6.93	6.58	5
Magnesium	36000	34900	3
Sodium	36600	33900	8

XIV. Field Blanks

Sample EB-12-5/12/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-12-5/12/08	Chromium	1.22

NASA JPL Metals - Data Qualification Summary - SDG JPL109


SDG	Sample	Analyte	Flag	A or P	Reason
JPL109	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08	Potassium Sodium	J (all detects) J (all detects)	Р	Calibration (ICV %R)
JPL109	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08	Arsenic	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL109

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL109	MW-23-4	Sodium	29500U ug/L	Α
JPL109	MW-23-3	Sodium	27400U ug/L	Α

NASA JPL Data Validation Reports LDC# 19005

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 12, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL109

Sample Identification

MW-23-5

MW-23-4

MW-23-3

MW-23-2

MW-23-1

EB-12-5/12/08

DUPE-3-2Q08

MW-23-5DUP

MW-23-1MS

MW-23-1MSD

DUPE-3-2Q08DUP

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-23-1MS/MSD (All samples in SDG JPL109)	Orthophosphate	86 (90-110)	88 (90-110)	-	J (all detects) UJ (all non-detects)	А
MW-23-1MS/MSD (All samples in SDG JPL109)	Perchlorate	-	121 (80-120)	-	J (all detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Relative percent differences (RPD) were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
MW-23-5DUP (All samples in SDG JPL109)	Bicarbonate alkalinity	13 (≤10)	J (all detects) UJ (all non-detects)	А

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-23-2 and DUPE-3-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration	
Analyte	MW-23-2	DUPE-3-2Q08	RPD
Bicarbonate alkalinity	200 mg/L	200 mg/L	0
Chloride	88 mg/L	98 mg/L	11
Nitrate as N	12 mg/L	12 mg/L	0
Sulfate	110 mg/L	120 mg/L	9
Total dissolved solids	560 mg/L	580 mg/L	4
На	7.5 units	7.3 units	3
Perchlorate	4.1 ug/L	4.0U ug/L	200

X. Field Blanks

Sample EB-12-5/12/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-12-5/12/08	pH Bicarbonate alkalinity	6.4 units 2.0 mg/L

NASA JPL
Wet Chemistry - Data Qualification Summary - SDG JPL109

SDG	Sample	Analyte	Flag	A or P	Reason
JPL109	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL109	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08	Perchlorate	J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL109	MW-23-5 MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-12-5/12/08 DUPE-3-2Q08	Bicarbonate alkalinity	J (all detects) UJ (all non-detects)	А	Duplicate analysis (RPD)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL109

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

June 30, 2008

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201

ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on June 26, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19019:

SDG # Fraction JPL110, JPL111, Volatiles, 1,4-Dioxane, Metals, Wet Chemistry JPL113, JPL114, JPL115, JPL117

The data validation was performed under EPA Level III and IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

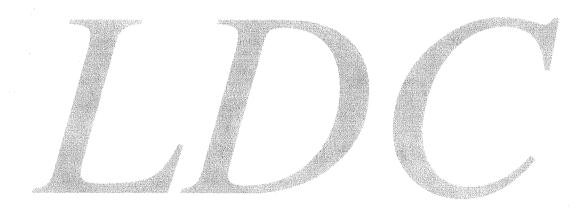
Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

															_		_			_					_									
		S										-											_									_	_	348
		≥																												Ш	_	_	\perp	
		S																																0
		≥																																0
	S (-	S	0	0	0	0	0	0	0	0																								0
	TDS (160.1)	≥	7	-	7	3	1	+	5	4		_																				\exists	\dashv	59
		S	0	0	0	0	0	0	0	0					\vdash										-						-	\dashv	+	
	CLO ₄ (314.0)													_	<u> </u>				\vdash				\dashv		-					Н		\dashv	+	
		≥	8	Ţ	8	4	3	4	9	5																					_	\dashv	4	36
	pH (150.1)	S	0	0	0	0	0	0	0	0					_								_		_					Ш	_	\perp	_	
	7 (15	3	7	Ţ	2	3	1	ŀ	4	3																							ł	27
	00 5.2)	S	•	1	1	1	1	1	0	0																								0
	0-PO ₄ (365.2)	≥	ı	٠		٠	1	1	9	5																								=
	Z- (1.	S		•	•	١	1	-	0	0													_]								_		_ T	0
	NO ₂ -N (354.1)	3		•	-	1	-	'	9	5																								Ŧ
		S			,	1	1	1	0	0				<u> </u>	<u> </u>																		\neg	0
7	NO ₃ -N (353.2)	3	•	•	1	1	-	-	4	3					<u> </u>																	\dashv	\dashv	7
Diego / NASA JPL		S	_	,	1	,	1	Н	0	0	\vdash				-						-		\dashv											
S	NO ₃ / NO ₃ -N (353.2)	3			,		_		9	5									H											Н		\dashv		11
Ž		\neg		2000						H																				Н	\dashv	\dashv	_	
10	O-PO ₄ (300.0)	S	0	0	0	0	0	•	1	1					-						_	_		-							_			
g		≷	3	Τ	80	4	3	J	'	'										_						\Box			_	_	\dashv			70
ם בי	NO ₂ -N (300.0)	S	0	0	0	0	0	0	'	1																					_		\dashv	
(Battelle-San		≷	3	-	8	4	3	-	-	'																							_	130
S	NO ₃ -N (300.0)	S	0	0	0	0	0	0	-	'																								0
e	NC (30	≯	80	ļ	8	4	ε	٠	ı	٠																								25
att	, 0.0	S	0	0	0	0	0	0	0	0																								0
(Battel	CI,SO4, (300.0)	8	8	1	8	4	3	1	6	5																								36
13	. C	S	0	0	0	0	0	0	0	0																								0
190	Alk. (310.1)	3	7	1	1	3	1	+	5	4																								29
LDC #19019		S	0	0	0	0	0	0	0	0					┢																			0
מׁ	Metals (200.8 /200.7)	3	12	1	8	4	5	-	8	7																_	_						\dashv	46
	9 (C	S	0	0	_		-	1	0	-																							+	0
	1,4- Dioxane (8270C)			1.											\vdash					_		_										\dashv	\dashv	5
	<u>ia</u> 8	}	_	1		-	'	1	3	Ľ	\vdash		L		 			_	Н			H				-		_	-	H	_	\dashv		
	VOA (524.2)	S	0	0	0	0	0	0	0	0					<u> </u>	<u> </u>			\vdash					\vdash		_			-				_	0
झ	(5	≥	3 7	3 1	9	3 5	3 2	3 1	3 5	4																					_	\dashv	_	34
10/90 (client select)	(3) DATE DUE		06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08	06/26/08 07/01/08																								
ent s	~ 6 g		07/0	07/0	07/0	07/0	07/0	07/0	07/0	07/0																								
(E)	ñΟ		/08	/08	/08	80/	80/	/08	/08	/08																								\Box
06/0	DATE REC'D		6/26	6/26	6/26	6/26	6/26	6/26	6/26	6/26																								
			0	0	0	0	0	0	0	0										_												\dashv	\dashv	\dashv
320	#5	ΙΘ	110	110	111	113	114	114	115	117																								œ
PO 214320	SDG#	Water/Soil	JPL110	JPL110	JPL111	JPL113	JPL114	JPL114	JPL115	JPL117																								T/LR
B		Wa																																
								H	\vdash	_	-				_	-													-	-		\dashv	\dashv	_
	LDC	Matrix:	۷	٧	В	ပ	۵	۵	3	u.																								Total


Attachment 1

0 pages

3 DAY TAT

NASA JPL Data Validation Reports LDC# 19019

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL110

Sample Identification

MW-24-5

MW-24-4

MW-24-3

MW-24-2

MW-24-1**

EB-13-5/13/08

DUPE-4-2Q08

TB-13-5/13/08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-13-5/13/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	А

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed.

The laboratory indicated that chloromethane detected results in samples MW-24-5, MW-24-4, MW-24-3, MW-24-1**, EB-13-5/13/08, and DUPE-4-2Q08 are due to contamination from the vials.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentr	ation (ug/L)	
Compound	MW-24-1**	DUPE-4-2Q08	RPD
Chloromethane	0.37	0.42	13
Chloroform	3.8	3.5	8
Bromodichloromethane	3.3	3.0	10
Dibromochloromethane	0.41	0.41	0

XVII. Field Blanks

Sample TB-13-5/13/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-13-5/13/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-13-5/13/08	Chloromethane	0.87

NASA JPL Volatiles - Data Qualification Summary - SDG JPL110

SDG	Sample	Compound	Flag	A or P	Reason
JPL110	TB-13-5/13/08	All TCL compounds	J (all detects) UJ (all non-detects)	А	Sample condition (air bubbles)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL110

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 14, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL111

Sample Identification

MW-25-5

MW-25-4

MW-25-3

MW-25-2

MW-25-1

EB-14-05/14/08

TB-14-05/14/08

MW-25-1MS

MW-25-1MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/22/08	Dichlorodifluoromethane	35.49	All samples in SDG JPL111	J (all detects) UJ (all non-detects)	Р
	Trichlorofluoromethane	43.51		J (all detects) UJ (all non-detects)	

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-25-1MS/MSD (MW-25-1)	Dichlorodifluoromethane Trichlorofluoromethane	154 (60-140) 165 (60-140)	156 (60-140) 165 (60-140)	-	J (all detects) J (all detects)	А

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S052208MVOWB2	Trichlorofluoromethane	145 (60-140)	All samples in SDG JPL111	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected results in samples MW-25-5, MW-25-4, MW-25-3, MW-25-1, and EB-14-05/14/08 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-14-05/14/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-14-05/14/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
MW-25-5	Chloromethane	0.58

NASA JPL Volatiles - Data Qualification Summary - SDG JPL111

SDG	Sample	Compound	Flag	A or P	Reason
JPL111	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-14-05/14/08 TB-14-05/14/08	Dichlorodifluoromethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
JPL111	MW-25-1	Dichlorodifluoromethane Trichlorofluoromethane	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL111	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-14-05/14/08 TB-14-05/14/08	Trichlorofluoromethane	J (all detects)	P	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL111

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 19, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL113

Sample Identification

MW-1

MW-9

TB-16-5/19/08

MW-1MS

MW-1MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-16-5/19/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	А

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/22/08	Dichlorodifluoromethane	35.49	All samples in SDG JPL113	J (all detects) UJ (all non-detects)	Р
	Trichlorofluoromethane	43.51		J (all detects) UJ (all non-detects)	

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-1 MS/MSD	Dichlorodifluoromethane	144 (60-140)	-	-	J (all detects)	Р
(MW-1)	Trichlorofluoromethane	158 (60-140)	145 (60-140)	-	J (all detects)	

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S052208MVOWB2	Trichlorofluoromethane	145 (60-140)	All samples in SDG JPL113	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected results in sample MW-9 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-16-5/19/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL113

SDG	Sample	Compound	Flag	A or P	Reason
JPL113	TB-16-5/19/08	All TCL compounds	J (all detects) UJ (all non-detects)	A	Sample condition (air bubbles)
JPL113	MW-1 MW-9 TB-16-5/19/08	Dichlorodifluoromethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
JPL113	MW-1	Dichlorodifluoromethane Trichlorofluoromethane	J (all detects) J (all detects)	Р	Matrix spike/Matrix spike duplicates (%R)
JPL113	MW-1 MW-9 TB-16-5/19/08	Trichlorofluoromethane	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL113

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 20, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL114

Sample Identification

MW-7**

DUPE-5-2Q08

TB-17-5/20/08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/22/08	Dichlorodifluoromethane	35.49	All samples in SDG JPL114	J (all detects) UJ (all non-detects)	Р
	Trichlorofluoromethane	43.51		J (all detects) UJ (all non-detects)	

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S052208MVOWB2	Trichlorofluoromethane	145 (60-140)	All samples in SDG JPL114	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed.

The laboratory indicated that chloromethane detected results in sample MW-7** are due to contamination from the vials.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected in results in sample MW-9 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-16-5/19/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL114

SDG	Sample	Compound	Flag	A or P	Reason
JPL114	MW-7** DUPE-5-2Q08 TB-17-5/20/08	Dichlorodifluoromethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
JPL114	MW-7** DUPE-5-2Q08 TB-17-5/20/08	Trichlorofluoromethane	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL114

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL115

Sample Identification

MW-13

MW-16

MW-8

DUPE-6-2Q08

TB-18-5/21/08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-18-5/21/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	А

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/27/08	Trichlorofluoromethane	33.16	All samples in SDG JPL115	J (all detects) UJ (all non-detects)	P

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected results in sample DUPE-6-2Q08 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Compound	MW-16	DUPE-6-2Q08	RPD
Chloroform	23	24	4
Bromodichloromethane	27	27	0
Toluene	1.5	1.5	0
Dibromochloromethane	21	22	5
Bromoform	5.9	6.4	8
Chloromethane	0.50U	0.38	200

XVII. Field Blanks

Sample TB-18-5/21/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL115

SDG	Sample	Compound	Flag	A or P	Reason
JPL115	TB-18-5/21/08	All TCL compounds	J (all detects) UJ (all non-detects)	А	Sample condition (air bubbles)
JPL115	MW-13 MW-16 MW-8 DUPE-6-2Q08 TB-18-5/21/08	Trichlorofluoromethane	J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL115

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 27, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL117

Sample Identification

MW-5 MW-6

DUPE-8-2Q08

TB-20-05/27/08

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S053008MVOWM1	cis-1,3-Dichloropropene	141 (60-140)	All samples in SDG JPL117	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

The laboratory indicated that chloromethane detected results in samples MW-6 and DUPE-8-2Q08 are due to contamination from the vials.

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-5 and DUPE-8-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concen	tration (ug/L)	
Compound	MW-5	DUPE-8-2Q08	RPD
Chloromethane	0.50U	0.27	200

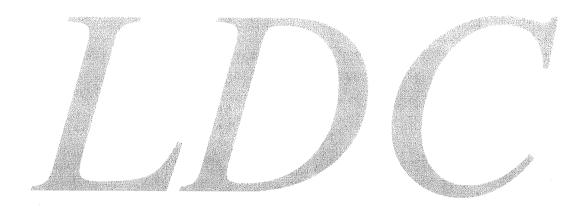
XVII. Field Blanks

Sample TB-20-05/27/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL

Volatiles - Data Qualification Summary - SDG JPL117

SDG	Sample	Compound	Flag	A or P	Reason
JPL117	MW-5 MW-6 DUPE-8-2Q08 TB-20-05/27/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)


NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL117

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19019

1,4-Dioxane

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

1,4-Dioxane

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL110

Sample Identification

MW-24-1** DUPE-4-2Q08

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for 1,4-Dioxane.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent EPA Level IV review. EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0%.

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No 1,4-dioxane was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No 1,4-dioxane was detected in any of the samples with the following exceptions:

	Concent	ration (ug/L)	
Compound	MW-24-1**	DUPE-4-2Q08	RPD
1,4-Dioxane	1.1	0.96	14

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL 1,4-Dioxane - Data Qualification Summary - SDG JPL110

No Sample Data Qualified in this SDG

NASA JPL 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG JPL110

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

1,4-Dioxane

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL115

Sample Identification

MW-13

MW-16

DUPE-6-2Q08

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for 1,4-Dioxane.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0%.

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No 1,4-dioxane was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No 1,4-dioxane was detected in any of the samples with the following exceptions:

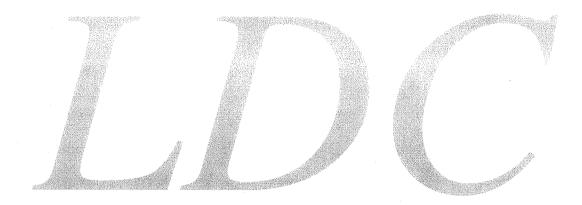
	Concentration (ug/L)		
Compound	MW-16	DUPE-6-2Q08	RPD
1,4-Dioxane	1.7	1.5	13

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL 1,4-Dioxane - Data Qualification Summary - SDG JPL115

No Sample Data Qualified in this SDG


NASA JPL

1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG JPL115

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19019

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 27, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL110

Sample Identification

MW-24-5

MW-24-4

MW-24-3

MW-24-2

MW-24-1**

EB-13-5/13/08

DUPE-4-2Q08

MW-24-5MS

MW-24-5MSD

MW-24-3MS

MW-24-3MSD

DUPE-4-2Q08MS

DUPE-4-2Q08MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/08	ICV	Potassium	116.3 (90-110)	MW-24-3 MW-24-3MS MW-24-3MSD PB	J (all detects)	Р
6/8/08	ICV	Potassium Sodium	124.3 (90-110) 115.1 (90-110)	MW-24-5 MW-24-4 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08 MW-24-5MS MW-24-5MSD	J (all detects) J (all detects)	Р
6/11/08	CCV2	Chromium Lead	115.0 (90-110) 118.0 (90-110)	MW-24-5 MW-24-4 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08 PB	J (all detects) J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	MW-24-5 MW-24-4 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-24-1**	Sodium	28500 ug/L	28500U ug/L
DUPE-4-2Q08	Sodium	26700 ug/L	26700U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra	Concentration (ug/L)		
Compound	MW-24-1**	DUPE-4-2Q08	RPD	
Calcium	69100	65100	6	
Chromium	3.77	4.68	22	
Iron	2380	1360	55	
Magnesium	21000	20700	1	
Sodium	28500	26700	7	

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Metals - Data Qualification Summary - SDG JPL110

SDG	Sample	Analyte	Flag	A or P	Reason
JPL110	MW-24-3	Potassium	J (all detects)	Р	Calibration (ICV %R)
JPL110	MW-24-5 MW-24-4 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08	Potassium Sodium	J (all detects) J (all detects)	Р	Calibration (ICV %R)
JPL110	MW-24-5 MW-24-4 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08	Chromium Lead	J (all detects) J (all detects)	Р	Calibration (CCV %R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL110

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL110	MW-24-1**	Sodium	28500U ug/L	А
JPL110	DUPE-4-2Q08	Sodium	26700U ug/L	А

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL111

Sample Identification

MW-25-5

MW-25-4

MW-25-3

MW-25-2

MW-25-1

EB-14-05/14/08

MW-25-1MS

MW-25-1MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Potassium	124.3 (90-110)	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 MW-25-1 MS MW-25-1 MSD	J (all detects)	Р
6/6/08	ICV	Sodium	115.1 (90-110)	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-14-05/14/08 MW-25-1MS MW-25-1MSD	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	EB-14-05/14/08	J (all detects)	Р
6/11/08	CCV2	Chromium Lead	115.0 (90-110) 118.0 (90-110)	PB	J (all detects) J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL111

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-25-2	Sodium	31500 ug/L	31500U ug/L
MW-25-1	Sodium	32900 ug/L	32900U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-14-05/14/08 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration (ug/L)
EB-14-05/14/08	Chromium	1.17

NASA JPL Metals - Data Qualification Summary - SDG JPL111

SDG	Sample	Analyte	Flag	A or P	Reason
JPL111	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-14-05/14/08	Potassium Sodium	J (all detects) J (all detects)	Р	Calibration (ICV %R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL111

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL111	MW-25-2	Sodium	31500U ug/L	А
JPL111	MW-25-1	Sodium	32900U ug/L	Α

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 19, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL113

Sample Identification

MW-1

MW-9

MW-1MS

MW-1MSD

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	MW-1 MW-9 MW-1MS MW-1MSD	J (all detects)	P
6/9/08	ICV	Potassium	112.4 (90-110)	MW-1 MW-9 MW-1MS MW-1MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL113

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-1	Sodium	32500 ug/L	32500U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration	
MW-9	Sodium	24700 ug/L	24700U ug/L	

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL

Metals - Data Qualification Summary - SDG JPL113

SDG	Sample	Analyte	Flag	A or P	Reason
JPL113	MW-1 MW-9	Potassium Sodium	J (all detects) J (all detects)	Р	Calibration (ICV %R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL113

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL113	MW-1	Sodium	32500U ug/L	Α
JPL113	MW-9	Sodium	24700U ug/L	Α

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 20, 2008

LDC Report Date:

June 27, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL114

Sample Identification

MW-7**
DUPE-5-2Q08
MW-7MS
MW-7MSD
DUPE-5-2Q08MS

DUPE-5-2Q08MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	MW-7** DUPE-5-2Q08 MW-7MS MW-7MSD	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	MW-7** DUPE-5-2Q08 MW-7MS MW-7MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL114

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-7**	Sodium	32100 ug/L	32100U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
DUPE-5-2Q08	Sodium	30600 ug/L	30600U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-7** and DUPE-5-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Compound	MW-7**	DUPE-5-2Q08	RPD
Calcium	67100	64800	3
Chromium	18.2	15.6	15
Iron	1100	1120	2
Magnesium	22300	22600	1
Sodium	32100	30600	5

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Metals - Data Qualification Summary - SDG JPL114

SDG	Sample	Analyte	Flag	A or P	Reason
JPL114	MW-7** DUPE-5-2Q08	Sodium Potassium	J (all detects) J (all detects)	Р	Calibration (ICV %R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL114

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL114	MW-7**	Sodium	32100U ug/L	А
JPL114	DUPE-5-2Q08	Sodium	30600U ug/L	А

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL115

Sample Identification

MW-13

MW-16

8-WM

DUPE-6-2Q08

MW-13MS

MW-13MSD

MW-8MS

MW-8MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	MW-13 MW-16 MW-8 DUPE-6-2Q08 MW-13MS MW-13MSD	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	MW-13 MW-16 MW-8 DUPE-6-2Q08 MW-13MS MW-13MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL115

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-13	Sodium	30000 ug/L	30000U ug/L
MW-8	Sodium	21600 ug/L	21600U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-16	DUPE-6-2Q08	RPD
Arsenic	2.47	2.36	5
Calcium	57300	56100	2
Chromium	18.1	17.4	4
Magnesium	23800	24100	1
Sodium	34700	33800	3

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Metals - Data Qualification Summary - SDG JPL115

SDG	Sample	Analyte	Flag	A or P	Reason
JPL115	MW-13 MW-16 MW-8 DUPE-6-2Q08	Potassium Sodium	J (all detects) J (all detects)	P	Calibration (ICV %R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL115

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL115	MW-13	Sodium	30000U ug/L	Α
JPL115	MW-8	Sodium	21600U ug/L	А

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 27, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL117

Sample Identification

MW-5

MW-6

DUPE-8-2Q08

MW-5MS

MW-5MSD

DUPE-8-2Q08MS

DUPE-8-2Q08MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	MW-5 MW-6 DUPE-8-2Q08 MW-5MS MW-5MSD	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	MW-5 MW-6 DUPE-8-2Q08 MW-5MS MW-5MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL117

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-5	Sodium	19400 ug/L	19400U ug/L
DUPE-8-2Q08	Sodium	29800 ug/L	29800U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

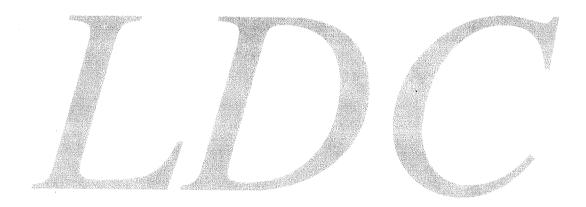
Samples MW-5 and DUPE-8-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-5	DUPE-8-2Q08	RPD
Calcium	33200	51300	43
Chromium	2.88	3,55	21
Iron	100U	108	8
Magnesium	10500	17200	48
Sodium	19400	29800	42

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Metals - Data Qualification Summary - SDG JPL117


SDG	Sample	Analyte	Flag	A or P	Reason
JPL117	MW-5 MW-6 DUPE-8-2Q 08	Potassium Sodium	J (all detects) J (all detects)	P	Calibration (ICV %R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL117

S DG	Sample	Analyte	Modified Final Concentration	A or P
JPL117	MW-5	Sodium	19400U ug/L	Α
JPL117	DUPE-8-2Q08	Sodium	29800U ug/L	А

NASA JPL Data Validation Reports LDC# 19019

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 13, 2008

LDC Report Date:

June 30, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL110

Sample Identification

MW-24-5

MW-24-4

MW-24-3

MW-24-2

MW-24-1**

EB-13-5/13/08

DUPE-4-2Q08

MW-24-3DUP MW-24-1MS

MW-24-1MSD

DUPE-4-2Q08DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Hours From Sample Collection Until Analysis	Required Holding Time (in Hours) From Sample Collection Until Analysis	Flag	A or P
MW-24-5	Nitrate as N	63.75	48	J (all detects) UJ (all non-detects)	А

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-24-1MS/MSD (All samples in SDG JPL110)	Nitrate as N	89 (90-110)	89 (90-110)	-	J (all detects) UJ (all non-detects)	А
MW-24-1MS/MSD (MW-24-1** DUPE-4-2Q08)	Orthophosphate	87 (90-110)	89 (90-110)	-	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-24-1** and DUPE-4-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration	
Analyte	MW-24-1**	DUPE-4-2Q08	RPD
Alkalinity, bicarbonate	170 mg/L	170 mg/L	0
Chloride	64 mg/L	63 mg/L	2
Nitrate as N	0.58 mg/L	0.58 mg/L	0
Sulfate	47 mg/L	46 mg/L	2
Total dissolved solids	350 mg/L	360 mg/L	3
Perchlorate	8.2 ug/L	9.4 ug/L	14
рН	7.2 units	7.1 units	1

X. Field Blanks

Sample EB-13-5/13/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-13-5/13/08	pH Total dissolved solids Alkalinity, bicarbonate	6.5 units 6.0 mg/L 2.0 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL110

SDG	Sample	Analyte	Flag	A or P	Reason	
JPL110	MW-24-5	Nitrate as N	J (all detects) UJ (all non-detects)	А	Technical holding times	
JPL110	MW-24-5 MW-24-4 MW-24-3 MW-24-2 MW-24-1** EB-13-5/13/08 DUPE-4-2Q08	Nitrate as N	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)	
JPL110	MW-24-1** DUPE-4-2Q08	Orthophosphate	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)	

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL110

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 14, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL111

Sample Identification

MW-25-5

MW-25-4

MW-25-3

MW-25-2

MW-25-1

EB-14-05/14/08

MW-25-1MS

MW-25-1MSD

MW-25-1DUP

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate/Nitrite as Nitrogen, EPA Method 354.1 for Nitrite as Nitrogen, EPA Method 365.2 for Orthophosphate as Phosphorus.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-25-1MS/MSD (All samples in SDG JPL111)	Orthophosphate	87 (90-110)	88 (90-110)	-	J (all detects) UJ (all non-detects)	А
MW-25-1MS/MSD (MW-25-4 MW-25-3 MW-25-1)	Perchlorate	-	127 (80-120)	-	J (all detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-14-05/14/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-14-05/14/08	pH Total dissolved solids	6.5 units 15 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL111

SDG	Sample	Analyte	Flag	A or P	Reason
JPL111	MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-14-05/14/08	Orthophosphate	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL111	MW-25-4 MW-25-3 MW-25-1	Perchlorate	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL111

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 19, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL113

Sample Identification

MW-1

MW-9

MW-1MS

MW-1MSD

MW-1DUP

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Sulfate, Nitrate as Nitrogen, Nitrite as Nitrogen, and Orthophosphate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-1MS/MSD (All samples in SDG JPL113)	Orthophosphate	86 (90-110)	86 (90-110)	-	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL113

SDG	Sample	Analyte	Flag	A or P	Reason
JPL113	MW-1 MW-9	Orthophosphate	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL113

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 20, 2008

LDC Report Date:

June 27, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL114

Sample Identification

MW-7**

DUPE-5-2Q08

MW-7MS

MW-7MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-7MS/MSD (All samples in SDG JPL114)	Chloride	-	111 (90-110)	-	J (all detects)	А
MW-7MS/MSD (All samples in SDG JPL114)	Nitrate as N Orthophosphate	89 (90-110) 83 (90-110)	89 (90-110) 83 (90-110)	-	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-7** and DUPE-5-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/L)	
Analyte	MW-7**	DUPE-5-2Q08	RPD
Alkalinity, bicarbonate	180	180	0
Chloride	69	69	0
Nitrate as N	0.73	0.73	0
Sulfate	46	46	0
Total dissolved solids	340	320	6

	Concenti	ation (units)	
Analyte	MW-7**	DUPE-5-2Q08	RPD
На	7.0	7.1	1

X. Field Blanks

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL114

SDG	Sample	Analyte	Flag	A or P	Reason
JPL114	MW-7** DUPE-5-2Q08	Chloride	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)
JPL114	MW-7** DUPE-5-2Q08	Nitrate as N Orthophosphate	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL114

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL115

Sample Identification

MW-13

MW-16

MW-8

DUPE-6-2Q08

MW-13MS

MW-13MSD

DUPE-6-2Q08MS

DUPE-6-2Q08MSD

DUPE-6-2Q08DUP

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate/Nitrite as Nitrogen, EPA Method 354.1 for Nitrite as Nitrogen, EPA Method 365.2 for Orthophosphate as Phosphorus.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-16	DUPE-6-2Q08	RPD
Alkalinity, bicarbonate	160	160	0
Chloride	72	71	1
Nitrat e/Nitrite as N	0.49	0.49	0
Sulfate	45	45	0
Total dissolved solids	350	380	8

	Concent	ration (units)	
Analyte	MW-16	DUPE-6-2Q08	RPD
рН	7.2	7.3	1

	Concent	tration (ug/L)	
Analyte	MW-16	DUPE-6-2Q08	RPD
Perc hiorate	4.8	4.8	0

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL
Wet Chemistry - Data Qualification Summary - SDG JPL115

No Sample Data Qualified in this SDG

NASA JPL
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL115

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 27, 2008

LDC Report Date:

June 26, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL117

Sample Identification

MW-5

MW-6

DUPE-8-2Q08

MW-5MS

MW-5MSD

DUPE-8-2Q08MS

DUPE-8-2Q08MSD

DUPE-8-2Q08DUP

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate/Nitrite as Nitrogen, EPA Method 354.1 for Nitrite as Nitrogen, EPA Method 365.2 for Orthophosphate as Phosphorus.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Affected Analyte	Flag	A or P
DUPE-8-2Q08MS/MSD (All samples in SDG JPL117)	Chloride	82 (90-110)	76 (90-110)	-	Chloride	J (all detects) UJ (all non-detects)	Α
MW-5MS/MSD (All samples in SDG JPL117)	Nitrite as N	-	122 (71-109)	20 (≤10)	Nitrite as N Nitrate as N	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

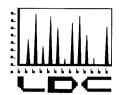
IX. Field Duplicates

Samples MW-5 and DUPE-8-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-5	DUPE-8-2Q08	RPD
Alkalinity, bicarbonate	100	100	0
Chloride	11	13	17
Nitrate/Nitrite as N	2.2	2.0	. 10
Nitrate as N	2.2	2.0	10
Sulfate	35	34	3
Total dissolved solids	220	190	15

	Concentra		
Analyte	MW-5	DUPE-8-2Q08	RPD
рН	6.8	7.1	4

X. Field Blanks


No field blanks were identified in this SDG.

NASA JPL
Wet Chemistry - Data Qualification Summary - SDG JPL117

SDG	Sample	Analyte	Flag	A or P	Reason
JPL117	MW-5 MW-6 DUPE-8-2Q08	Chloride	J (all detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicates (%R)
JPL117	MW-5 MW-6 DUPE-8-2Q08	Nitrite as N Nitrate as N	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)(RPD)

NASA JPL
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL117

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle 505 King Avenue

Room 10-1-170

Columbus, OH 43201

ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 27, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19026:

<u>SDG #</u> <u>Fraction</u>

JPL112 Volatiles, Metals, Wet Chemistry

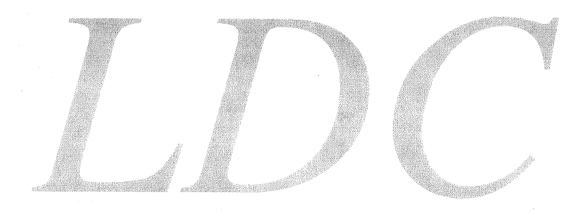
The data validation was performed under EPA Level III and IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto


Operations Manager/Senior Chemist

June 30, 2008

			S							İ							<u> </u>		Γ	Ī			 <u> </u>						28
			3								<u> </u>		\vdash				 		┢				\vdash		-		-		0
			\vdash				_	 _									 		┝		_			<u> </u>		<u> </u>	-	$\vdash\vdash$	\dashv
			S					 _													 _		<u> </u>				Ш	$\vdash \vdash$	
			≯					 <u> </u>											_					<u> </u>					
-			S					 <u> </u>																					0
			≯																_										0
			S																										0
			3																										0
			S																										0
			Χ																										0
			S												 								 ļ	ļ			Н	\Box	0
			3																										0
			S					 						-	 	_								<u> </u>		<u> </u>			0
			8														 										Н		0
		=	S	0	0																								
	7	TDS (160.1)	> ≥	4	÷	_		 -					-				-	_	\vdash	Н			\vdash	\vdash		\vdash	Н	\vdash	5 (
	JPL)		S V	0	0	\dashv	\dashv	\vdash	H	_	\vdash	Н		H					_	Н			\vdash	\vdash	_	\vdash	H	\dashv	0
	26 (Battelle-San Diego / NASA	CLO ₄ (314.0)	δ Α	5	200	_		 			_	_	-		 		 		 		 	 	 		 	\vdash	\vdash	\vdash	0 9
	AN		\vdash	\dashv	÷		-	\vdash			H				 		 						_				Н	\vdash	$\vdash \vdash \vdash$
	70	pH (150.1)	S		0	_		<u> </u>									 		<u> </u>					\vdash	_		\vdash	Н	0
	eg		≯	4	-																						\square		5
11	百	O-PO ₄ (300.0)	S		0			_																				Щ	
mer	an		≥	5	+			 														 							9
Attachment 1	S-9	NO ₂ -N (300.0)	S	0	0																								0
Ħ	ell	N 06	3	2	-																								9
	Satt	NO ₃ -N (300.0)	S	0	0																								0
	9) (E		≥	5	Ŧ																								9
	026	,O ₄ ,	S	0	0																								0
	LDC #190	CI,SO4, (300.0)	>	5	1																								9
	# J		S	0	0																								0
	<u>"</u>	Alk. (310.1)	3	4	-																								5
			S	0	0																						П		0
		Metals (200.8 /200.7)	3	5	-	\dashv									 		 										П	П	9
			S		0	\dashv	\dashv																					\Box	0
		VOA (524.2)	3	9	+		\dashv	\vdash									 										Н		7
	ect)				COSTA ALTON	\dashv	\dashv																				H	Н	$-\parallel$
×	sek	(3) DATE DUE		07/02/08	07/02/08																								
911 pages-EX	10/90 (client select)						4										 		_									\square	
pag	၁) 06	DATE REC'D		06/27/08	06/27/08	l																							
911	10/8	2 8		06/2	06/2																								
																						 					П	П	
	0																												
Ţ	1432	SDG#	/Soil	JPL112	JPL112																								/LR
3 DAY TAT	PO 214320	S	Water/Soil	ᅴ	틧																								T/LR
3																													
		ГРС	Matrix:	∢	∢	寸																					H	\dashv	Total
L	Edit 1		≥		_`																				<u> </u>	L	لــــا		டி

NASA JPL Data Validation Reports LDC# 19026

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 15, 2008

LDC Report Date:

June 28, 2008

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL112

Sample Identification

MW-26-2**

MW-26-1

EB-15-5/15/08

SB-1-2Q08

TB-15-5/15/08

MW-26-1MS

MW-26-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TB-15-5/15/08	All TCL compounds	Air bubbles were apparent in the sample containers.	There should be no air bubbles in the sample containers.	J (all detects) UJ (all non-detects)	А

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed.

The laboratory indicated that chloromethane detected results in samples MW-26-1, EB-15-5/15/08, and SB-1-2Q08 are due to contamination from the vials.

Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-15-5/15/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-15-5/15/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-15-5/15/08	Chloromethane Chloroform	0.53 0.26

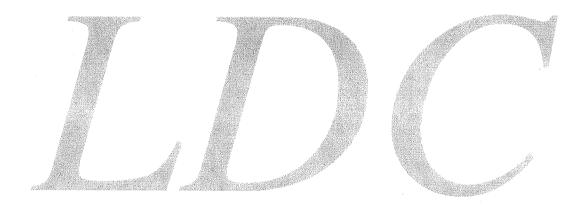
Sample SB-1-2Q08 was identified as a source blank. No volatile contaminants were found in this blank with the following exceptions:

Source Blank ID	Compound	Concentration (ug/L)
SB-1-2Q08	Chloromethane	0.43

NASA JPL

Volatiles - Data Qualification Summary - SDG JPL112

SDG	Sample	Compound	Flag	A or P	Reason
JPL112	TB-15-5/15/08	All TCL compounds	J (all detects) UJ (all non-detects)	А	Sample condition (air bubbles)


NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL112

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19026

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 15, 2008

LDC Report Date:

June 28, 2008

Matrix:

Water

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL112

Sample Identification

MW-26-2**

MW-26-1

EB-15-5/15/08

SB-1-2Q08

MW-26-1MS

MW-26-1MSD

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	All samples in SDG JPL112	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	MW-26-2** EB-15-5/15/08 SB-1-2Q08	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	All samples in SDG JPL112

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-26-1	Sodium	31000 ug/L	31000U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-26-1MS/MSD (All samples in SDG JPL112)	Calcium	69.6 (70-130)	-	-	J (all detects) UJ (all non-detects)	А

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

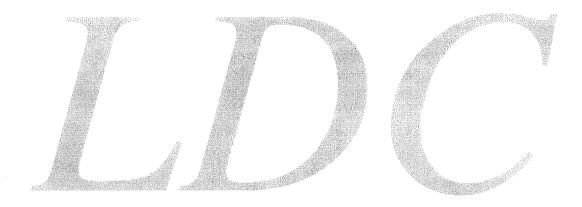
No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-15-5/15/08 was identified as an equipment blank. No metal contaminants were found in this blank.

Sample SB-1-2Q08 was identified as a source blank. No metal contaminants were found in this blank.

NASA JPL Metals - Data Qualification Summary - SDG JPL112


SDG	Sample	Analyte	Flag	A or P	Reason
JPL-112	MW-26-2** MW-26-1 EB-15-5/15/08 SB-1-2Q08	Sodium	J (all detects)	Р	Calibration (ICV %R)
JPL112	MW-26-2** EB-15-5/15/08 SB-1-2Q08	Potassium	J (all detects)	Р	Calibration (ICV %R)
JPL112	MW-26-2** MW-26-1 EB-15-5/15/08 SB-1-2Q08	Calcium	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Metals - Laboratory Blank Data Qualification Summary - SDG JPL112

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL112	MW-26-1	Sodium	31000U ug/L	А

NASA JPL Data Validation Reports LDC# 19026

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 15, 2008

LDC Report Date:

June 28, 2008

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL112

Sample Identification

MW-26-2**

MW-26-1

EB-15-5/15/08

SB-1-2Q08

MW-26-1MS

MW-26-1MSD

MW-26-1DUP

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-26-1MS/MSD (All samples in SDG JPL112)	Orthophosphate	86 (90-110)	87 (90-110)	-	J (all detects) UJ (all non-detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-15-5/15/08 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Analyte	Concentration
EB-15-5/15/08	pH Total dissolved solids Alkalinity, bicarbonate	6.8 units 24 mg/L 2.0 mg/L

Sample SB-1-2Q08 was identified as a source blank. No contaminant concentrations were found in this blank with the following exceptions:

Source Blank ID	Analyte	Concentration
SB-1-2Q08	pH Total dissolved solids	6.6 units 10 mg/L

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL112

SDG	Sample	Analyte	Flag	A or P	Reason
JPL112	MW-26-2** MW-26-1 EB-15-5/15/08 SB-1-2Q08	Orthophosphate	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL112

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle

July 3, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201

ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 2, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19046:

SDG#

Fraction

P0801509

N-Nitrosodimethylamine, Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

	3 DAY TAT												Ā	ttach	Attachment 1	7												i							
	PO 214320	10/90 (client select)	ant selec	t)				9	₩ U	:19(946	(Ba	LDC #19046 (Battelle-San Diego / NASA JPL)	Je-5	san	Die	ègo	N.	AS.	A	E)														
TPC	\$DC#	DATE REC'D	(3) DATE DUE	Nitro- samines (521)	ines 21)	Cr.(Cr(VI) (7196A)																												
Matrix:	c: Water/Soil			3	S	≥	S	≥	S	≥	S	8) 	S W	8	≥	လ	≯	S	3	S	3	8	S M	≥	8 /	≥	S	. 3	S	3	N S	S /	≥	S	
4	P0801509	07/02/08 07/08/08	07/08/08	3	0	9	0						-	_																					
											\dashv	-	\dashv	_						\neg		\dashv	\dashv		_	_			\exists		\dashv	\dashv	_		
1										1	\dashv	\dashv		_	_	_				\neg		\dashv	\dashv	\dashv	\dashv	_				\dashv		\dashv	\dashv		
																							\dashv	\dashv						\neg					
														<u> </u>																					
														_	_	L					\vdash		_	<u> </u>	_					┢	-	_	L		
															_										_										
												_	<u> </u>											<u> </u>									ļ		
																								_											
																							_												
																						\vdash													
												_	_											\dashv	_								4		
1											\dashv	\dashv	\dashv			_				\dashv		-	\dashv	\dashv	\dashv										
Total	T/LR			3	0	9	0	0	0	0	0	0 0	0 0	0	٥	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	9	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

July 2, 2008

Matrix:

Water

Parameters:

Hexavalent Chromium

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0801509

Sample Identification

MW-13

MW-16

8-WM

DUPE-6-2Q08

MW-13MS

MW-13MSD

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples with the following exceptions:

	Concentra	ation (mg/L)	
Analyte	MW-16	DUPE-6-2Q08	RPD
Hexavalent chromium	0.017	0.021	21

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0801509

No Sample Data Qualified in this SDG

NASA JPL Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0801509

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

NASA JPL

Collection Date:

May 21, 2008

LDC Report Date:

July 2, 2008

Matrix:

Water

Parameters:

N-Nitrosodimethylamine

Validation Level:

EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): PB0801509

Sample Identification

MW-13

MW-16

DUPE-6-2Q08

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 521 for N-Nitrosodimethylamine.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance check is not required by the method.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No N-Nitrosodimethylamine was found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-16 and DUPE-6-2Q08 were identified as field duplicates. No N-Nitrosodimethylamine were detected in any of the samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL

N-Nitrosodimethylamine - Data Qualification Summary - SDG PB0801509

No Sample Data Qualified in this SDG

NASA JPL

N-Nitrosodimethylamine - Laboratory Blank Data Qualification Summary - SDG PB0801509

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Battelle July 9, 2008

505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 9, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19075:

SDG#	<u>Fraction</u>
JPL116	Volatiles, Metals, Wet Chemistry

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

		7	_	7=	7	-		Ë	÷	_	_	=	_	_	_	Ţ	—		_			_		_											
			ν.	<u>'</u>	<u> </u>					<u>L</u>		1				L							Ī					Π	T		Π	Т			47
			}														Γ		Γ									Г	T	T	T	T	П	\dashv	0
			V.									Π							T	1			1			1			†		T	†-	H	7	
			3							T	1	T		1	十	T	1	╁	T	†	十	\vdash	┢	\vdash		 -		┢	+-	H	-	+	H	\dashv	
			\sigma	+-					1	T	\vdash	\vdash	<u> </u>	H	╁╴	┢	H	1-	H	╁	╁	\vdash		\vdash	-	<u> </u>	\vdash	-	┼	╀	├	╁	H	-	—∥
				T	\vdash			-	H	┢	 	\vdash	-	\vdash	1	\vdash	十	-	┢	╁	╁╌	\vdash	-	_	-	<u> </u>	_	-	╁	╀	-	┢	╁╌┤	-	
			S	1	╁┈	\vdash	┝	<u> </u>	_	-	\vdash	-	-	┝	╁	┝	-	╄	\vdash	╁	\vdash	┢	-		<u> </u>	_	L	<u> </u>	├_	-	L	├-	\vdash	4	의
	l		-	\vdash	\vdash	_	H	├	┝		+	_		_	┝	┢	├	-	-	╀	├	-	_	ļ	L	_			<u> </u>	L		_	$ \cdot $	_	의
			≥	+-	┢			H	┼	┢.	┝	_		_	ļ	L	 	┝	<u> </u>	╁	-	_			_			L	<u> </u>	L	_	L	Ш	_	의
			S	├	\vdash	-	_	_	١.	H	-	_	_	_	├	_	L		\vdash	╄	<u> </u>			<u> </u>					<u> </u>	lacksquare	_	L		_	의
			}	+		<u> </u>	L		L	L	<u> </u>		_	L	L		L		L	<u> </u>															0
			S	+-	_			<u> </u>	_	L	_		_	_		_	<u> </u>	L		L	_	<u>L</u>													0
			≥					_	<u> </u>		_			L	_		L			_															0
		TDS (160.1)	S	⊢						ļ	L			L				L		<u>L.</u>															0
			+	3																															က
		CLO, (314.0)	S	0	Ш																														0
	<u>F</u>	<u> </u>	≥	5																													П	7	2
	Ą	pH (150.1)	S	0																									T					\top	
	AS	q 15	≥	က																									_					十	3
	Z	⁷ 6	S	0																														\dashv	
	go	O-PO ₄ (365.2)	3	5									_							T			\neg										\vdash	\dashv	2
_)ie	z e	S	0													-						_		\dashv	ᅥ	\dashv		-			-		+	
ent	<u>_</u>	NO ₂ -N (354.1)		3																	_		\dashv		-	┪	\dashv			-		_	-	+	e
Attachment 1	(Battelle-San Diego / NASA JPL)		s	0		\exists																	\dashv	ᅥ	\dashv		\dashv		Н				-	+	
Atta	€	NO ₃ -N (353.2)	3	3	П	\exists		_					\dashv										\dashv	┪	\dashv	-	\dashv	\dashv					-	╅	e
	att		S	0		\exists									_						\dashv	\dashv	_	\dashv	\dashv	\dashv	\dashv	-		_	\dashv		\dashv	+	
	B	NO ₃ -N (353.2)	>	5						Н		\dashv	\dashv									\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	\dashv		\dashv	-	
	75		S	0	\dashv	\dashv	-	\exists				\dashv	\dashv	_						-		-	_	\dashv		\dashv	\dashv				-		_	→-	2
	190	CI,SO4. (300.0)	>	5								\dashv	\dashv		_	-				\vdash		\dashv	\dashv	\dashv	_	\dashv			-	_	\dashv	\dashv	-+		
	LDC #1907		S	0		\dashv	\dashv					\dashv	\dashv			\dashv	_	\dashv		\vdash		\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	\dashv		\dashv	-	2
	ă	Alk. (310.1)	*	4	\dashv	+	\dashv	-	-		-	\dashv	\dashv	_		_	_			H	\dashv		_	\dashv		4	\dashv			4	_		4	+	의
	7		S	0	-	\dashv	\dashv		-		-	ᅱ	-		\dashv	\dashv		-	-	Н	\dashv	\dashv	_	\dashv	4	\dashv	_	\dashv		_	4		4	+	4
		Metals (200.8 /200.7)	» »	-	\dashv	-	+	\dashv		\dashv	-	\dashv	-	\dashv	-	\dashv	_	\dashv			\dashv	\dashv	4	\dashv	4	-	4	\dashv		_	\dashv		_	+	
			\vdash	_	_	\dashv	\dashv		-	\dashv	\dashv		4	4		_	_	_			_		4	\dashv	_	4	4	_						\perp	
		VOA (524.2)	S /	4	\dashv	+		\dashv			-	4	4	_	_	4	_	_			_	_	\perp	_	4	4	_	\perp				\sqcup			
	ਉ		≯	4	\dashv	-	4	\dashv	4	_	4	\dashv	\dashv	_	_	_		_			_	4	4	\dashv	4	\perp								Ŀ	4
¥	sele	(3) DATE DUE		14/0		-	ı					ļ	ŀ			ı									-	ı	ı	İ							
807 pages-EX	10/90 (client select)	٥		07/09/08 07/14/08																		1													
bag	၁) 0(DATE REC'D		80/6						- [-	- [T			\exists			寸		_	1	1
804	10%	₽ P		0/0				1	ı								ľ		İ		1				ı	ı	Ì	-					:		
	Ì				\top	十	\top	7	7	\dashv	\dashv	7	7	寸		\dashv	+	\dashv	\dashv	+	\dashv	\dashv	\dashv	+	+	+	\dashv	\dashv	\dashv	+	\dashv	\dashv	-	+	-
	٥								ŀ				ł					l			-			-							ı		l		
Ϋ́	1432	*SDC	/Soil	JPL116	İ		-	1	l				ı	-	ı	-				İ				-			1	1							۲
3 DAY TAT	PO 214320	တ	Water/Soil	制										-								Ì													- ILK
~	-																																		
	Ī	LDC	Matrix:	∢		7	\top	\top	\dashv	\dashv	\forall	+	十	\dashv	\dashv	\dagger	\dashv	+	\dashv	\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+	+	十	+	+-	Oral
			-1					L						- 1		ı	1		- 1	- 1			1	- 1	- 1	- 1	- 1		- 1		- 1		- 1	17	٥II

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: May 22, 2008

LDC Report Date: July 9, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL116

Sample Identification

MW-10 MW-15

DUPE-7-2Q08

TB-19-5/22/08

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
S053008MVOWM1	cis-1,3-Dichloropropene	141 (60-140)	All samples in SDG JPL116	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-15 and DUPE-7-2Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concen	tration (ug/L)	
Compound	MW-15	DUPE-7-2Q08	RPD
Toluene	0.37	0.35	6

XVII. Field Blanks

Sample TB-19-5/22/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG JPL116

SDG	Sample	Compound	Flag	A or P	Reason
JPL116	MW-10 MW-15 DUPE-7-2Q08 TB-19-5/22/08	cis-1,3-Dichloropropene	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG JPL116

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: May 22, 2008

LDC Report Date: July 9, 2008

Matrix: Water

Parameters: Metals

Validation Level: EPA Level III

Laboratory: Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL116

Sample Identification

MW-10

MW-15

DUPE-7-2Q08

MW-10MS

MW-10MSD

DUPE-7-2Q08MS

DUPE-7-2Q08MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.7 and 200.8 for Metals. The metals analyzed were Arsenic, Calcium, Chromium, Iron, Lead, Magnesium, Potassium, and Sodium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/6/08	ICV	Sodium	115.1 (90-110)	MW-15	J (all detects)	Р
6/9/08	ICV	Potassium	112.4 (90-110)	MW-10 MW-15 DUPE-7-2Q08 MW-10MS MW-10MSD	J (all detects)	Р
6/9/08	ICV	Sodium	113.1 (90-110)	MW-10 DUPE-7-2Q08 MW-10MS MW-10MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Sodium	6.73 mg/L	MW-15

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-15	Sodium	29300 ug/L	29300U ug/L

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-15 and DUPE-7-2Q08 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-16	DUPE-6-2Q08	RPD
Arsenic	1.82	1.67	9
Calcium	51000	50000	2
Chromium	16.2	9.94	48
Iron	160	115	33
Magnesium	17800	16800	6
Sodium	29300	30700	5

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL

Metals - Data Qualification Summary - SDG JPL116

SDG	Sample	Analyte	Flag	A or P	Reason
JPL116	MW-10 MW-15 DUPE-7-2Q08	Potassium Sodium	J (all detects) J (all detects)	Р	Calibration (ICV %R)

NASA JPL

Metals - Laboratory Blank Data Qualification Summary - SDG JPL116

SDG	Sample	Analyte	Modified Final Concentration	A or P
JPL116	MW-15	Sodium	29300U ug/L	А

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: May 22, 2008

LDC Report Date: July 9, 2008

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III

Laboratory: Pace Analytical Services, Inc.

Sample Delivery Group (SDG): JPL116

Sample Identification

MW-10

MW-15

DUPE-7-2Q08

MW-10MS

MW-10MSD

DUPE-7-2Q08MS

DUPE-7-2Q08MSD

DUPE-7-2Q08DUP

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 150.1 for pH, EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride and Sulfate, EPA Method 310.1 for Carbonate and Bicarbonate Alkalinity, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate as Nitrogen and Nitrate/Nitrite as Nitrogen, EPA Method 354.1 for Nitrite as Nitrogen, EPA Method 365.2 for Orthophosphate as Phosphorus.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
MW-10	Total dissolved solids	39 days	7 days	J (all detects) R (all non-detects)	Р
MW-15 DUPE-7-2Q08	Total dissolved solids	29 days	7 days	J (all detects) R (all non-detects)	Р

Non-detected sample concentrations were qualified as unusable (R) due to a gross exceedance (>2X) of holding time.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met for each method.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/23/08	ICV	Orthophosphate as P	118.4 (90-110)	MW-10 MW-15 DUPE-7-2Q08 MW-10MS MW-10MSD	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Affected Analyte	Flag	A or P
DUPE-7-2Q08MS/MSD (MW-15 DUPE-7-2Q08)	Nitrate/Nitrite as N	-	112 (90-110)	-	Nitrate/Nitrite as N Nitrate as N	J (all detects) J (all detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS	Orthophosphate as P	118 (90-110)	All samples in SDG JPL116	J (all detects)	P

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-15 and DUPE-7-2Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concenti		
Analyte	MW-15	DUPE-7-2Q08	RPD
Bicarbonate alkalinity	170	170	0

	Concentration (mg/L)		
Analyte	MW-15	DUPE-7-2Q08	RPD
Chloride	25	24	4
Nitrate/Nitrite as N	1.3	1.3	0
Nitrate as N	1.3	1.3	0
Sulfate	47	45	4
Total dissolved solids	240	260	8

	Concentration (units)		
Analyte	MW-15	DUPE-7-2Q08	RPD
рН	7.3	7.2	1

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG JPL116

SDG	Sample	Analyte	Flag	A or P	Reason
JPL116	MW-10 MW-15 DUPE-7-2Q08	Total dissolved solids	J (all detects) R (all non-detects)	Р	Technical holding times
JPL116	MW-10 MW-15 DUPE-7-2Q08	Orthophosphate as P	J (all detects)	Р	Calibration (%R)
JPL116	MW-15 DUPE-7-2Q08	Nitrate/Nitrite as N Nitrate as N	J (all detects) J (all detects)	А	Matrix spike/Matrix spike duplicates (%R)
JPL116	MW-10 MW-15 DUPE-7-2Q08	Orthophosphate as P	J (all detects)	Р	Laboratory control samples (%R)

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG JPL116

No Sample Data Qualified in this SDG