ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

This attachment summarizes the field quality assurance, laboratory quality assurance, data verification and data validation procedures utilized for the JPL groundwater monitoring program. Data validation was performed by an independent subcontractor, Laboratory Data Consultants, Inc. of Carlsbad, California. Data verification and validation indicated that the all volatile organic carbon (VOC), perchlorate and metal results obtained from the third quarter 2008 sampling event were acceptable for their intended use of characterizing aquifer quality.

ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

A comprehensive QA/QC plan for groundwater monitoring is described in detail in the Quality Assurance Project Plan for the Groundwater Monitoring Plan (Ebasco, 1993). Field and laboratory QC samples were used to fulfill QA requirements. Proper sample acquisition and handling procedures were utilized to ensure the integrity of the analytical results.

FIELD QUALITY ASSURANCE/QUALITY CONTROL

The field QA/QC samples collected for JPL groundwater monitoring included duplicate samples, equipment rinsate blanks and trip blanks. The QC sample results were used for the qualitative evaluation of the aquifer recovery. Table 1-1 presents a summary of the contaminants detected in quality control samples collected during the third quarter 2008 sampling event.

Duplicate Field Samples. Duplicate samples were used to evaluate the precision of the laboratory analyses. Duplicate samples for volatile organic compounds (VOCs), perchlorate, total chromium, hexavalent chromium [Cr(VI)], and specific conductance were collected from monitoring wells MW-4 (Screen 3), MW-11 (Screen 4), MW-12 (Screen 2), MW-14 (Screen 2), MW-17 (Screen 4), MW-18 (Screen 3) and MW-19 (Screen 2).

The analytical results for the duplicate samples were comparable to the results of the original groundwater samples for VOCs (Table 1) and Metals (Table 2).

Equipment Rinsate Blanks. Equipment rinsate blanks were collected each day that nondedicated sampling equipment was used. The equipment rinsate blanks, consisting of distilled water run through the sampling equipment after decontamination, were analyzed for all contaminants of concern to monitor possible cross-contamination of samples due to inadequate decontamination. Chloroform was detected in 5 of 11 equipment blanks at or near the reporting limit of $0.5 \ \mu g/L$. M,p-xylene was detected in 2 of 11 equipment blanks and chloromethane was detected in 1 of 11 equipment blanks. The source of the VOC detections in the equipment blanks could not be determined. Detections in the equipment blanks were compared to the sample results during the data validation process to determine the impact on the sample results. The tentatively identified compound (TIC) sulfur dioxide was detected in one equipment blank, EB-05-7/25/08 at a concentration of 5.9 μ g/L.

Trip Blanks. Trip blanks, which consisted of reagent-grade water placed in a vial and transported with the sample bottles to and from the field, were submitted to the laboratory with each shipment of groundwater samples. Trip blanks were used to help identify cross-contamination of groundwater samples during transport and sample handling procedures. The TIC sulfur dioxide was detected in one trip blank, TB-05-7/25/08 at a concentration of 3.8 μ g/L. No other contaminants were detected in any of the trip blanks as shown in Table 1-1.

Source Blank. A source blank consists of distilled water used by sampling personnel for equipment decontamination. The source blank is collected at the sampling site and preserved, as appropriate. This QC sample serves as a check on contamination present in the source water. No source blank was collected during the third quarter 2008 sampling event. However, the same source of decontamination water was in the second quarter event and no contaminants were detected in the source blank.

LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

Laboratory QC samples included surrogate compounds (for VOC analyses), matrix spike samples, blank spike samples, and method blanks. The results of the laboratory QC samples were used by the laboratory to determine the accuracy and precision of the analytical techniques, and to identify anomalous results due to laboratory contamination or instrument malfunction.

DATA VERIFICATION AND VALIDATION

The purpose of data verification and validation is to assure that the data collected meet the data quality objectives (DQOs) outlined in the Quality Assurance Project Plan of the Groundwater Monitoring Plan (Ebasco, 1993). Data verification and validation indicated that all of the sample results obtained from the third quarter 2008 sampling event were acceptable for their intended use of characterizing aquifer quality.

Data Verification. All data collected were subjected to data verification. Data verification is a review of the analytical data that includes confirming that the sample identification numbers on the laboratory reports match those on the chain-of-custody records. Data verification also includes a review of the analytical data reports to confirm that all samples were analyzed and all required analytes were quantified for each sample.

Data Validation. Data validation is a systematic review of the analytical data that is used to determine the compliance of the established method performance criteria and determine whether the data quality is sufficient to support the data quality objectives. Validation of a data package included review of the technical holding time requirements, review of sample preparation, review of the initial and continuing calibration data, review and recalculation of the laboratory QC sample data, review of the equipment performance, reconciliation of the raw data with the reduced results, identification of data anomalies, and qualification of data to identify data usability limitations.

Data validation was performed by an independent subcontractor, Laboratory Data Consultants, Inc. (LDC) of Carlsbad, CA. One hundred percent of all data analyzed by the analytical laboratories, Alpha Analytical, Inc. of Sparks, Nevada and Columbia Analytical Services, Inc. (CAS) of Kelso, Washington were validated. Ninety percent of the data were subjected to Level III validation and ten percent of the data were subjected to Level IV validation in accordance with the EPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic/Inorganic Data Review (U.S. EPA, 1999; 2004). The data were evaluated to ensure suitability and usability for the purpose of the groundwater monitoring report.

Data Validation Qualifiers. Analytical data were qualified based on data validation. For chemical data, qualifiers were assigned in accordance with EPA guidelines.

There was one notable exception to the analytical criteria as summarized below:

• The orthophosphate analysis for MW-13 was performed at 49.75 hours after collection. The required holding time (HT) is 48 hours. The orthophosphate result for MW-13 was flagged by the data validator with a "J" indicating that the result should be considered an estimate.

The data validation reports are included in Attachment 2.

REFERENCES

- Ebasco. 1993. *Work Plan for Performing a Remedial Investigation/Feasibility Study*. National Aeronautics and Space Administration Jet Propulsion Laboratory, Pasadena, California. December.
- U.S. EPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. February.
- U.S. EPA. 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. December.

ATTACHMENT 2: DATA VALIDATION REPORTS (SUMMARY SHEETS)

This attachment contains the summary sheets from the data validation performed by an independent subcontractor, Laboratory Data Consultants, Inc. (LDC), Carlsbad, California. Complete data validation reports are available upon request.

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 4, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on July 28, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19183:

SDG # Fraction

P0802261, Hexavalent Chromium P0802271

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

200 Table feature levent LDC #1913 (Battelle-San Diego / MASA JPL) # Rore (min) Rore (min) N	ð	ages	an an an Andreas an Ann										1		Atts	achn	nent	-				-															_
Mater Mater <th< th=""><th>PO 214320</th><th></th><th>10/90 (cl</th><th>ient sele</th><th>Ĵ</th><th></th><th></th><th></th><th>-</th><th>DC</th><th>#16</th><th>918</th><th>3 (E</th><th>3att</th><th>elle</th><th>ŝ-S</th><th>an</th><th>Die</th><th>go</th><th>Z</th><th>AS/</th><th>ちょ</th><th>Ĵ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	PO 214320		10/90 (cl	ient sele	Ĵ				-	DC	#16	918	3 (E	3att	elle	ŝ-S	an	Die	go	Z	AS/	ちょ	Ĵ														
	SDG#		DATE REC'D	(3) DATE DUE	<u> </u>)r(VI) 196A	-3																														
	Water/Soil				<u>≤</u>		5	~	2	s /	≥	s	≥	S	≥	S	3	S	≥	S	3	5	2	<u><</u>	- s	3	S	≥	s	≥	S	3	> >	N N	3	S	
	P080226	-	07/28/08	08/18/0	8	0																		┝	-	_	ļ						-	-	-	_	
	P080227		07/28/08	08/18/0	8	-	_																														
					-	-																															
							_	_																													
					_																											┢──		-			
																										_									_	<u> </u>	
																						┢─			-							┢	$\left \right $				*
							\vdash			<u> </u>									\square	\square	\vdash	┢			\vdash								┢		╞	_	
								<u> </u>													$\left \right $	┢	\square	-	┢	ļ	ļ					┢	+				
					_														1		┢──						<u> </u>					┢		-	–		
							<u> </u>														┢	-	-	\vdash	_									-			
																								-		<u> </u>	_								_	_	
						-																	-										┼─			<u> </u>	
							_																												_	L	
							_	_																													
																																				<u> </u>	
					-																																
												_																									
						-		_																													
							_	_	_																												
								_		_																											
								_								-																					
12 1 1 1 1 1 0					_		_																														
															_																		\vdash				
																							_	<u> </u>									┢─	-			
																							_											-	 		
									_																												
	T/LR				15	<u>م</u>	ᅴ	_	0	0	<u> </u>	0	0	0	0	0	0	0	0	-	-				0	0	0	0	0	0	0	0	0 0	0	0	15	
-																																!		1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPL

Collection Date: July 18, 2008

LDC Report Date: July 30, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802261

Sample Identification

MW-21-5 MW-21-4 MW-21-3 MW-21-2 MW-21-1 EB-01-7/18/08 MW-21-5MS MW-21-5MSD

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

nanna h-airdhean an air a bhailtean annan ann an anna tharaich an an an an an an an an tha tha tha an an ann an

No field duplicates were identified in this SDG.

a da Aurona de lancie el Polece a Araba de la Colonia Anto Colonia estas presenta de Aurona de Mandel Antonio de Colonia de Co

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802261

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802261

No Sample Data Qualified in this SDG

LDC Report# 19183B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JF	te name: NAS/	4 JPL
----------------------------	---------------	-------

Collection Date: July 21, 2008

LDC Report Date: July 30, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802271

Sample Identification

MW-14-3 MW-14-2 MW-14-1 DUPE-01-3Q08 EB-02-7/21/08 MW-14-3MS MW-14-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-14-2 and DUPE-01-3Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-02-7/21/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802271

No Sample Data Qualified in this SDG

NASA JPL

COMMENDED DE LE COMPLETE PARA EN 1970 - A SUBARA DE LA COMPLETA DE LA COMPLETA DE LA COMPLETA DE LA COMPLETA DE

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802271

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 11, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on August 7, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19248:

SDG # Fraction

P0802320 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

		- <u></u> -		رم ارم		T	T	Т	- T	Т		-		T	T	Ť.	7		-	-		_	_		_	_	_	_	_	_								
			┝	<u> </u>	_ -	+	+	+	+	+	\neg			_	┨	\vdash	+	+	\downarrow	\downarrow	\square											T	Γ	T	Γ	Γ	÷	
			-	5						_	_					_	\perp	\bot	\downarrow	_																	0	
			-	<u>s</u>	_ _	╇	+	+	+	+	\dashv	_			L.	_			1.															Γ			0	
			-+-	5		+-			+	-						\vdash			\downarrow	_	\square																0	
			┝	s _		+	╋	+-	-	+	_	_				<u> </u>	_		1			_															0	4857
			_	\$		+-				-	_			_					\bot																Γ		0	6
	1		┝	s _				+-	+	+	\downarrow							\perp	\downarrow																		0	
				\$		+	┿	+	+-		_		_	_			_	\perp			_																0	
			H	S I	+-	-		+	+	+	+	-	_			L		 			_	_															0	
			+	≤		 		-			_																										0	
			H	<u>~</u>		┢	+	+-	+-		-	-+	_			_				\perp																	0	l
	1			5		┢	┢	+-	+-		+	_									\downarrow				_												0	
			Ľ	<u>~</u>	+-	-	+-	╞	+-	+-	4	-	_					┢		\perp	\downarrow	$ \downarrow$			_		_		_								0	
				5	+-		-	┢	+	+	4	_	_	_						\downarrow			$ \downarrow$	_													0	
		ĩ	E			┣	-		+-	-	+	+	4	-		_			_		_	_							_								0	
		<u>i</u>	+	5		-				4-	_	-		4	_									_											\square		0	
	A S		F		+-		-	┢	+-	+-	+	-	_		_								_	_				_							\square		0	
	Z		-	5			-	-	╂		+	-	4	$ \rightarrow$	_								\bot				_										0	
	0		F		+-		-	_	┢	┨	_	+	4	4	$ \rightarrow$						\downarrow		\bot	\square													0	
	iea						-	-		╀	-	+	+	_	_					 _			\square			_											0	
ent 1				+	+		<u> </u>		┝─	╋	╋	+	_	_	_						1		_			$ \downarrow$											0	
hmé	Sa			<u>}</u>	+	-	_			+-	╋	+	+	-+			_			_	-	_		-	\downarrow	\downarrow		_		\bot		_					0	
Attac	ė				+			<u> </u>	┢	+-	╉	+	+	+	-+						-	4-	_	_	4												0	
	atte			- 						╋	╋	╉	+	+	+	_				-	╞	+	\downarrow	_	_	-	\downarrow	_			_		_				0	
	ğ			-	+					┢╌	┼─	╉	┽	+	+	-				<u> </u>	╞	╇	4	$- \downarrow$	_	+	_	_	_	_			_	_			0	
	48		0	,	┼╌┦	-	-	_		┢	┢	╋	+	-	+	+	-		_		╋	+	+	+		-	+	+	_				\square				<u> </u>	
	192			-	╞╴┨		-	_		┢─	╀	┿	╋	╉	+	+	\dashv	-+	_		-	+-	+	+	_	+	-	4		_	_	$ \downarrow$	-	_			0	Ê
	# U		5	-	+				-	┢	┢	╋	╉	+	╉	+	-			-	╞	╇	+		_	-	4	_	_	+	\downarrow	-	_	_	_		9	lidatio
	ě		3	<u> </u>	╞╶┨						┢	╉	╉	+	╉	+	-+		_		+-	+	╉	+	+	+			-	_	_	_	_	-	_	<u> </u>	<u> </u>	III va
			S		+			-			┢	╋	╉╴	╉	+	╉	+		_		┢	╀	+-	+	+	+-	╇	+	+	_ _	-	+	\dashv	_	_	4		Level
			3						-	-	1-	+	+-	╈	+	+	+	-+			-	╋	╋	╉	+-	+	+	╉	+	╉		-+	-	_	_		믜	s are
		(j)	S	0		\neg		-				1-	+	╈	╈	╉	+	╉	-		┝	┼─	╋	+	╉	╋	+	+-	+	╋	-	+	_	+				er cell
		Cr(3	11		1		1			┢─	1-	+	╈	╈	╈	+	╉	-		-	╀─	+	╋	╀╴	╋	╀	╉		+	+	+	_	-	+		긔	ll othe
	elect	<u> </u>		/08							-	t	┢	╀╴	╈	╈	+	+	+		-	┢	+-	╋	╋	╉	╉╴	╋	+-	+-	+	+	_	_	-			on (a
	ant s	E A D		38/28																																		alidati
) (clie	щΩ		08 (-+	╉	+	+	-			┝	┢╌	╀	╋	╉	╉	+	+	_		+-	╋	┢	+-	╀	+	+	_	+		_	_	\downarrow				≥
	90/10	DAT		8/07/																																		Leve
				-	-+	╉	+	+	\dashv			_	┝	+-	+	+		-	-			L_	↓_	\bot	1													licate
	20	*	-	20																																		ells inc
ges	2143	SDG	ir/Soi	8023																																œ		aded c
0 pa	8		Wate	g																																12		Shé
	ļ		ž,	-			\perp				_																											
		Ĕ	Mat	۲														Γ	T	T									\vdash	1-	1	\dagger	+-	\uparrow	+		1	

LDC Report# 19248A6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site	Name:	NASA JPL

Collection Date: July 23, 2008

LDC Report Date: August 8, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): P0802320

Sample Identification

MW-17-4 MW-17-3 MW-17-2 DUPE-3-3Q08 EB-07-7/23/08 MW-18-4 MW-18-3 MW-18-3 MW-18-2 DUPE-4-3Q08 MW-17-4MS MW-17-4MSD

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-17-4 and DUPE-3-3Q08 and samples MW-18-3 and DUPE-4-3Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-07-7/23/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802320

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802320

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 12, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on August 8, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19255:

SDG # Fraction

P0802352 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages													Atta	achn	lent	-																			ſ	
	PO 214320	90/10 (cli	ent select						Ö	#19	25!	<u>B</u>	att	elle	Ň-		Die	jo j	N	VS/		۲)															
ГРС	SDG#	DATE REC'D	(3) DATE DUE	Cr((719	VI) 6A)																																
Matrix:	Water/Soil			N	s	3	s	×	S	≥	s	>	S	Ν	S	Ŵ	s	N	s	N	s	N	s I	× ۷	<u>></u>	v s	\$	/ s	N N	s /	≥	S	3	s	×	S	
۷	P0802352	08/08/08	08/29/08	7	0																																
۲	P0802352	08/08/08	08/29/08	F	0																																
																			_					_													
																				-																Γ	
																										-										Ī	
																		\vdash				-		-				<u> </u>								Γ	
																										<u> </u>										ſ	
																	-																				
																										_											
																																					-
																																				1	
																																		-			
																		-				-															
																							\neg			_											
						1				$ \downarrow$								\neg		\neg		\neg	\neg	-	-	_				_	\downarrow					Т	
Total	T/LR			8	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	-	0	-	-	-	-			-		-	-	-	ᅴ	<u> </u>	0	0	0	8	
	Shaded cells in	Idicate Level	IV validatio	n (all c	other	cells	are I	evel	III va	lidatio	ĉ																				16	3255S	T.wpd				

LDC Report# 19255A6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site Name: NASA J

Collection Date: July 25, 2008

LDC Report Date: August 11, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III & IV

Laboratory:

Sample Delivery Group (SDG): P0802352

Sample Identification

MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 EB-05-7/25/08 MW-20-4MS MW-20-4MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

COMPLETE AND AND AND COMPLETE

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-05-7/25/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802352

No Sample Data Qualified in this SDG

WAR AND A COMPLETED AND A COMPLETED

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802352

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 21, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 14, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19292:

 SDG #
 Fraction

 P0802370, P0802384,
 Hexavalent Chromium

 P0802406, P0802421
 Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages													Atti	achn	len	-																			
	PO 214320	90/10 (cl	ient selec	જ્ર					BC	1#1	929	12 (1	3at	telle	e-S	an	Die	go	N.	AS.	AJ	E	_													
рс Гр	SDG#	DATE REC'D	(3) DATE DUE	<u>3</u> c	r(VI) 196A																															
Matrix	: Water/Soil			×	S	8	F,	× ×		2	S	3	s	≥	s	≥	S	3	S	≥	s	8	s		15	V S	∣≥	s	∣≥	s	∣≥	S	≥	S	3	
۷	P0802370	08/14/08	09/02/08	3 10	0			-	-														\vdash	┝	┝	-				ļ						Γ
В	P0802384	08/14/08	09/02/08	~ ~	0	<u> </u>				<u> </u>			 								\square	┢	<u> </u>	\vdash	├				_		ļ					Τ
ပ	P0802406	08/14/08	09/02/08	6	0		┝		┝	-		<u> </u>									1		1		┝	\vdash			<u> </u>						Γ	Ι
ပ	P0802406	08/14/08	09/05/08	3	9																1						_		_		<u> </u>					Γ
٥	P0802421	08/14/08	09/02/08	~	0	<u> </u>					<u> </u>								1		T		\vdash	┢	╂—											
								┝		<u> </u>		<u> </u>							1		\square		┢	┢	┢	-	ļ			ļ		<u> </u>				Γ
							<u> </u>																	┢	┢──	\vdash			ļ	L						Τ
								$\left - \right $													-					-			<u> </u>		ļ					Τ
																																				
					L		-				_									 			\vdash	┝	-	┝				<u> </u>						
								\vdash		<u> </u>													-	╞	┢	┝			ļ			ļ				Γ
									 											1	1		\vdash	┢				ļ			ļ				Γ	Τ
									-		_										\vdash		┢	┝												Γ
					L			\vdash					L								F			┝	-	<u> </u>				<u> </u>						Γ
							<u> </u>	-												 	\vdash			┝	┝											Γ
											ļ										<u> </u>			-							ļ					Î
									<u> </u>										 																	Ī
																			-				\vdash		-											
																									┣─	_										<u> </u>
																								 		<u> </u>										
									\square										 				\vdash													Ī
																												<u> </u>								Γ
																							-													Γ
																				 																<u> </u>
																										<u>'</u>					ļ					[
																				\vdash	\vdash		\vdash	-		 	L				L					Γ
																								-	-											
																								-	┣—		<u> </u>									
																								-												
					\square		-+	-+	-	-								_																		
Total	T/LR			35	-	의	의	-	_	-	<u> </u>	0	0	0	0	0	0	-	0	0	0	-	_		_	-	<u>ہ</u>	-	0	0	<u> </u>	0	0	0	0	35
	Shaded cells in	ndicate Level	IV validatio	n (all	lothe	r cells	s are	i Leve	ал Ш К	alidati	, nc																				19.	292S1	baw.			

LDC Report# 19292A6

a barren a kunnen an stren der

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 28, 2008
LDC Report Date:	August 21, 2008
Matrix:	Water
Parameters:	Hexavalent Chromium
Validation Level:	EPA Level III
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802370

Sample Identification

MW-3-4 MW-3-3 MW-3-2 MW-4-3 MW-4-2 MW-4-1 DUPE-5-3Q08 EB-06-7/28/08 MW-3-4MS MW-3-4MSD

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.
All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Samples MW-4-3 and DUPE-5-3Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-06-7/28/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802370

No Sample Data Qualified in this SDG

NASA JPL

STANDERSEN DER STANDERSE ANDER ANDERSEN DER STANDERSEN DER SEINE DER STANDER ANDER DER STANDERSEN DER STANDERSE

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802370

No Sample Data Qualified in this SDG

LDC Report# 19292B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:
--------------	-------

NASA JPL

Collection Date: July 29, 2008

LDC Report Date: August 21, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802384

Sample Identification

MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 MW-23-3MS MW-23-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-07-07/29/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802384

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802384

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 30, 2008
LDC Report Date:	August 21, 2008
Matrix:	Water
Parameters:	Hexavalent Chromium
Validation Level:	EPA Level III & IV
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802406

Sample Identification

MW-11-3** MW-11-2 MW-11-1 MW-22-3** MW-22-2 MW-22-1 EB-08-07/30/08 MW-11-2MS MW-11-2MSD MW-22-1MS MW-22-1MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-08-07/30/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802406

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802406

No Sample Data Qualified in this SDG

LDC Report# 19292D6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 31, 2008
LDC Report Date:	August 21, 2008
Matrix:	Water
Parameters:	Hexavalent Chromium
Validation Level:	EPA Level III
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802421

Sample Identification

MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08 MW-12-3MS MW-12-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Contract production production records and the

Samples MW-12-2 and DUPE-7-3Q08 were identified as field duplicates. No hexavalent chromium was detected in any of the samples.

X. Field Blanks

Sample EB-09-7/31/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802421

No Sample Data Qualified in this SDG

NASA JPL

REPARTANTANTAN TANG ING DILAK REDIKING KALANGKANAN ARAWANA ARAWANA KATAPATAN PARTANAN ARAWAN KATAPATAN

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802421

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 21, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on August 18, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19308:

SDG # Fraction

P0802448 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages													Attac	hme	nt 1														-						
	PO 214320	90/10 (cli	ent selec	÷					U.	#19	308	<u>Ö</u>	atte	ille.	Sai		ieg	10	NA	SA	Ā	_		· · ·												
р Б	*SDG#	DATE REC'D	(3) DATE DUE	5 <u>1</u>	(VI)																															
Matrix.	: Water/Soil			3	s	3	s	3	s	N	s	3	- s	3	> \$	>	S	s /	3	S	≥	S	≥	S	3	s	3	5		> 0	s s	3	S	≥	S	
∢	P0802448	08/18/08	80/60/60	8	0																															
																														<u> </u>						
																															┣──					
																																э.				
																		\vdash																ļ		
													\vdash	-		-		-								┢──										
														┢─	-	\vdash		-	\vdash							-			\mathbf{h}							
																-	\vdash									\square		┢──		┢	-					
													-			\vdash					ļ								-	┢	\vdash		ļ			
													┢	\vdash	┢	┝					ļ					┢	T		┢─							
																					ļ												<u> </u>			
																			_															_		
																													┢				ļ	L		
														-	<u> </u>												 		$\left \right $							
																										_										
														_																						
													+		+																					
otal	T/LR			8	0	0	0	0	0	0	0	0	0	-	0			-	0	0	0	0	0	0	0	0	0	0	_	_	_	-	_	<u> </u>	8	
	Shaded cells ir	Idicate Level	IV validatio	n (all	other	cells	are L	evel	III vali	datior	÷																				19308	ST.wp	ğ			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	August 1, 2008
LDC Report Date:	August 20, 2008
Matrix:	Water
Parameters:	Hexavalent Chromium
Validation Level:	EPA Level III
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802448

Sample Identification

MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 MW-25-3MS MW-25-3MSD

1

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-10-8/1/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802448

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802448

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 21, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 18, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19314:

<u>SDG #</u>

Fraction

P0802472, P0802511 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda[®]T. Rauto Operations Manager/Senior Chemist

	0 pages													Atta	цщ	ent 1																				1
	PO 214320	90/10 (cli	ant selec	¢.						#19	314	B) 1	atte) jle	-Sa	0 2	lieg	0	NA	SA	ا ط	3														
LDC	*90S	DATE REC'D	(3) DATE DUE	δĔ	(IV) 96A)								·····																							I
Matrix:	Water/Soil			≥	s	≥	s	≥	s	≥	s	≥	s	≥	s	2	<u><</u>	~	<u> </u>	- s	3	S	≥	S	≥	s	3	S	≥	S	≥	S	3	5	2	1.40
٩	P0802472	08/18/08	80/60/60	ი	0															\square																1
B	P0802511	08/18/08	80/60/60	3	0																															-
																	\square	\square																		
																		\vdash	\vdash																	
																			<u> </u>																	
																																				r
																	-			-														-		1
							L		 						-		\vdash		-																	T
																					 		-													<u> </u>
									<u> </u>						┢	-		\vdash	-		<u> </u>			ļ											┢	т
														†			<u> </u>	\vdash		_	<u> </u>		_	ļ	ļ											Г
									L					\vdash	\square		-	-		┣	-												┢	<u> </u>		T
								<u> </u>							┢		\vdash	-		-	-	 														1
							 	_	 											-												1				r -
														-			-		-			<u> </u>											 		-	r
													-								-														-	r
																																				 T
															-																					
																											-				\square			<u> </u>		1
																	-				<u> </u>												┢			_
													 		<u> </u>		-			-	┡												\vdash	-		_
																																				<u> </u>
																																				<u></u>
															-			_																		
																			\square																	
																																				-
															\dashv	-	-+	-	\dashv																	
															+	+	-+		+		-	\square					-									1
otal	T/LR			12	0	0	ᅴ	<u> </u>	<u> </u>	<u> </u>	0	0	0	0	-	긝	ᅴ	_	-	-	_	_	<u> </u>	0	0	0	0	0	0	0	0	0	0		Ē	
	Shaded cells i	ndicate Level I	V validatio	n (all	other	cells	are I	Level	III val	idatio	ŕ																				193	14ST	paw			

LDC Report# 19314A6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: August 4, 2008

LDC Report Date: August 20, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): P0802472

Sample Identification

MW-24-4 MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 MW-26-2 MW-26-1 MW-24-1MS MW-24-1MSD

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-11-08/04/08 was identified as an equipment blank. No hexavalent chromium was found in this blank.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802472

No Sample Data Qualified in this SDG

a she warayan ƙwara

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802472

No Sample Data Qualified in this SDG

LDC Report# 19314B6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site	Name:	NASA JPL

Collection Date: August 5, 2008

LDC Report Date: August 20, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): P0802511

Sample Identification

MW-7 MW-7MS MW-7MSD

V:\LOGIN\BATTELLE\JPL\19314B6.BA3

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.
NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802511

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802511

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 28, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on August 18, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19317:

SDG # Fraction

BMI08072345 Volatiles, Perchlorate

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA 500 Series Methods for the Determination of Organic Compounds in Drinking Water, EPA/600/4-88/039, December 1988, Supplemental I 1990, Supplemental II August 1992, Supplemental III August 1995

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages-EX												Atts	achn	Jent	_																		[
	PO 214320	10/90 (cli	ent selec	÷				Ĕ	Ч Т Т	93	I7 (I	Bat	telle	ŝ-Ŝ	J L	Dieg) o (NA	SA	Ę	Ĵ													
S	8DG#	DATE REC'D	(3) DATE DUE	(25 K	4.2) 4.2)	ઝંદે	0,4 (0,4																											
atrix:	Water/Soil	ang ter generation and an Anne a stàitean ann ann		≥	s	≥	s		^		<u> </u> ≥	s	3	S	∣≥	5		× ×	v s	∣≥	s	∣≥	S	3	s s	8	s s	s s	∣≥	s	3	S	≥	S
4	BMI08072345	08/18/08	80/60/60	6	0	8	0				-							┝			 				\vdash									1
٩	BMI08072345	08/18/08	80/60/60		0		0										┢	┝	┝		<u> </u>					\vdash	┢							<u> </u>
										\vdash	_	_			\square		╞	-		-	ļ											\square	1	Γ
									-	-							$\left \right $				<u> </u>	<u> </u>											1	Γ
																	┝				<u> </u>							-					┢	ľ
																-				<u> </u>														Γ
										┝	<u> </u>					╞		\vdash	-															Ī
_									-							┢	-	-																Γ
												L			┢	┢	╞									\vdash	-						┢	Г
																	-	-	┡		-						-					┢		Γ
L										-				Ĺ	[┢	-	┝	┝	\vdash					<u> </u>			-				1	T	Ι
									-	-	_				\vdash	\vdash	-	┝	┡								\vdash					1	1	ſ
															\vdash	┢	\vdash	\vdash	\vdash	 							$\left \right $	\vdash	┞				1	Γ
									\vdash								-	-			 			T									\square	Г
															\vdash	┢	╞	-	-	<u> </u>		<u> </u>							ļ					Τ
										┡					\vdash	┢		┝	\vdash						\vdash	+		ļ						Τ
								\vdash	\vdash	-								-	╞															Γ
_									-	L						-	-											╞				\square		
																-		-	-						-									1
_																-											\vdash					1		
																\vdash		<u> </u>	<u> </u>						-			-						
																		_																<u> </u>
																	 																	<u> </u>
_																																		<u> </u>
																		\vdash																1
-																																		
-																				\square														
+								\neg	+	-+	-				\neg	\dashv	-	-																
tal	T/LR			10	0	6	0	0	0	-	-	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	19
	Shaded cells in	indicate Level	V validatio	n (all c	other	cells	are Le	vel III	validat	ion).																			19	317S]	paw.]
				,																										í				

NASA JPL Data Validation Reports LDC# 19317

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: June 22, 2008
- LDC Report Date: August 28, 2008
- Matrix: Water
- Parameters: Volatiles
- Validation Level: EPA Level III & IV
- Laboratory: Alpha Analytical, Inc.
- Sample Delivery Group (SDG): BMI08072345

Sample Identification

MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1** DUPE-2-3Q08 EB-03-7/22/08 TB-03-7/22/08 MW-19-4MS MW-19-4MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/29/08	Dichlorodifluoromethane	32.0	MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1** DUPE-2-3Q08 EB-03-7/22/08 TB-03-7/22/08 MBLK MS15W0729L	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-19-2 and DUPE-2-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concen	tration (ug/L)	
Compound	MW-19-2	DUPE-2-3Q08	RPD
Trichloroethene	1.0	0.99	1

XVII. Field Blanks

Sample TB-03-7/22/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-03-7/22/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-03-7/22/08	m,p-Xylenes	0.99

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072345

SDG	Sample	Compound	Flag	A or P	Reason
BMI08072345	MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1** DUPE-2-3Q08 EB-03-7/22/08 TB-03-7/22/08	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072345

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19317

Perchlorate

LDC Report# 19317A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA

Collection Date: July 22, 2008

LDC Report Date: August 21, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III & IV

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072345

Sample Identification

MW-19-5 MW-19-4 MW-19-3 MW-19-2 MW-19-1** DUPE-2-3Q08 EB-03-7/22/08 MW-19-4MS MW-19-4MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

1995-96775-27677235111106975555555

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-19-2 and DUPE-2-3Q08 were identified as field duplicates. No perchlorate was detected in any of the samples with the following exceptions:

	Concent	ration (ug/L)	
Analyte	MW-19-2	DUPE-2-3Q08	RPD
Perchlorate	4.68	4.87	4

X. Field Blanks

Sample EB-03-7/22/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072345

No Sample Data Qualified in this SDG

NASA JPL Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072345

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 28, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on August 25, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19353:

<u>SDG #</u>

Fraction

P0802585, P0802599 Hexavalent Chromium

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages												A	ttacł	Juer	Ę																				
	PO 214320	90/10 (cli	ent select	¢				9	÷ U	193	353	(Ba	ittel	le-	San	ā	oɓa	11	IAS	A.	Ā	(
LDC	SDG#	DATE REC'D	(3) DATE DUE	2 <u>5</u>	(VI) 96A)																	h				·····									l	
Matrix:	Water/Soil	and a start of the		3	s	3	S	≥	S	3	s	~	<u>ح</u>	s v	≥	S	≥	S	3	s	3	S	3	5		<	s /	∣≥	S	≥	s	≥	S	3	S	
۷	P0802585	08/25/08	09/16/08	2	0																														Γ	
8	P0802599	08/25/08	09/16/08	4	0																														<u> </u>	
																																			T	
													_																		L				ſ	
																																			Ē	
																																			<u> </u>	
																														<u> </u>					<u> </u>	
																												ļ							Γ	
											<u> </u>													-		_	┣──									
																																			Γ	
																																			<u> </u>	
																																			Γ	
												_																								
													_																							
													_		_																					
																																			<u> </u>	
																																			<u> </u>	
														_												_										
+																																				
												_	-									\neg				_		-	_		_				Τ	
												+	_	_	_	\square										_	_		_						Т	
Total	T/LR			ი	0	0	0	0	0	0	0			ᅴ	-	ᅴ	<u> </u>	0	0	0	0	0	0		ᅴ	-	-	의	<u> </u>	의	의	0	0	0	൭	
	Shaded cells in	ndicate Level	IV validatio	n (all	other	cells	are	evell	ll vali	lation'																				19	353S	[who				

NASA JPL Data Validation Reports LDC# 19353

Hexavalent Chromium

LDC Report# 19353A6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site Name: NASA JPL

Collection Date: August 8, 2008

LDC Report Date: August 25, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): P0802585

Sample Identification

MW-5 MW-6 MW-15 MW-5MS MW-5MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802585

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802585

No Sample Data Qualified in this SDG

LDC Report# 19353B6

Laboratory Data Consultants, Inc. Data Validation Report

Columbia Analytical Services, Inc.

Project/Site Name: NA	\SA JPL	PL
-----------------------	---------	----

Collection Date: August 11, 2008

LDC Report Date: August 25, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): P0802599

Sample Identification

MW-13 MW-8 MW-13MS MW-13MSD

V:\LOGIN\BATTELLE\JPL\19353B6.BA3

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

and a state of the second state of the second s

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802599

No Sample Data Qualified in this SDG

e constray o

NASA JPL

the end want in the state with a little

ふたいたいさんじん ためたたち たんてん やれー

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802599

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 28, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed is the final validation report for the fraction listed below. This SDG was received on August 25, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19362:

SDG #FractionP0802625Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

PO 214320 Sortiol (client select) LDC #1362 (Battelle-San Diego / NASA JPL) C Stock Durf (x) (x) (x) (x) Durf (x) (x) (x) (x) Diego / NASA JPL) C Stock Durf (x) (x) (x) Durf (x) (x) N) 	1			1	SV 830 X		1.4. Sec. 201	181-182 (School)		11 13 12 14 14 14					and the second se				Ì		ľ					
b b		PO 214320	90/10 (cli	ient sele	ઈ	ta da an		1		5	FI V	362	ğ	atte	ile.	Sai	ā	leg	-0	Z	SA	Ð	Û												
Weissend		SDG#	DATE REC'D	(3) DATE DUE	<u>3</u> 0	(IV) 96A)																													
	.×	Water/Soil	a a caracteria A a caracteria A a caracteria		≥	s	≥	s	3	S	3	S	3	< /	2	s S	L s	<u> ≈</u>	1 s	13	l s	∣≥	S	≥	S	3	S	3	2 0		> 0		>	S	∣≥
		P0802625	08/25/08	09/16/05	3 3	0						 			-	╞			┡	╞				<u> </u>			L				-			-	
		P0802625	08/25/08	09/16/05	3	0								┢──			\vdash	-	┣—	<u> </u>		. 						╞	+	┢		-	<u> </u>		
	_														-	\vdash			<u> </u>	<u> </u>	⊢						t		┢			-	_		
																<u> </u>				<u> </u>				<u> </u>							-			ļ	
														-		<u> </u>														-	\vdash	┝			
														┢	\vdash	\vdash			\vdash	-	<u> </u>			<u> </u>			\vdash		+	┢	┢				
															-		┞		-					L			\square	\square	┢	┼──	<u> </u>	-			
					 		 					\vdash		\vdash			\vdash	<u> </u>			-	ļ						\square		+	-	+	-		
																-			<u> </u>	<u> </u>				<u> </u>			\vdash	\square	┢	┢	┢		┢		
																											\vdash		┝						
	1													\vdash		-				┣—	┣		ļ				 -			┢	╞		<u> </u>	<u> </u>	
														_															┝		-	╞			
	- 1																													-			<u> </u>		
					-																									-	-		<u> </u>		
																_																			
						\square	\square							-																					
	- 1				$ \downarrow$									_																					
	1															_																			
					-								-		-																				
											┫					_																			
												-															$\left - \right $								
	- 1											_																				<u> </u>			
	- 1																																		
	- 1											_																							
	- 1																				L										\vdash				
	1																										\vdash			-					
																											-					_			
																					<u> </u>						-	\vdash							
												\vdash	┝─╋		$\left - \right $	\vdash	┝─┤			\square	-						┢┤	┝╴┨	\square						
		C F			·					-	1	+		+	+				_		+						+		_	+	_		_		
1/LK 1 1 14 10 10 10 10 10 10 10 10 10 10 10 10 10		1/LK	_		4	믜	0	0	-	ᅴ	-	_ 0		╢		ᅴ	의	<u> </u>	<u> </u>	의	의	0	0	0	0	0	-	-		_	-	<u> </u>	<u> </u>	0	0

NASA JPL Data Validation Reports LDC# 19362

Hexavalent Chromium

LDC Report# 19362A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JP	NASA JPL
----------------------------	----------

Collection Date: August 12, 2008

LDC Report Date: August 26, 2008

Matrix: Water

Parameters: Hexavalent Chromium

Validation Level: EPA Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): P0802625

Sample Identification

MW-16 MW-10** MW-16MS MW-16MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 7196A for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.
NASA JPL Hexavalent Chromium - Data Qualification Summary - SDG P0802625

No Sample Data Qualified in this SDG

NASA JPL

Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG P0802625

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

September 9, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 25, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19369:

<u>SDG #</u>	Fraction
BMI08072222, BMI07072244	Volatiles, Chromium, Hexavalent Chromium

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

Î			<u>س</u>		I	1	-														1			T	-		-						Т	ΞĪ
					-			<u> </u>	\vdash	\vdash	\vdash		-															 	\square				+	0
			>	-	-																							 					-	
			5		_	_																						 						\exists
			3			_												-															\rightarrow	-
			S																									 					_	ᅴ
			3			_																						 					_	의
			S	_																								 						2
			≥																														_	<u> </u>
			S																														_	<u> </u>
			≥																															0
			S																															0
			≥																															0
			S																															0
			≥																															0
			S																															0
	P		3																															0
			s																															0
	ASI		≥																															0
	Z		S							\vdash					\vdash													 						
	0		2								\vdash			-																				-
	ieç		s					\vdash	-						┢──	\vdash																		0
ţ			2						\vdash																								╡	0
Ĕ	Sa		- 0	-											-	┢								\vdash					┢				-	
<u>Itac</u>	-e		~									-					\vdash							\square						┢			+	
◄	tte		>					-									-			┝				\square				 -	-		┢		-	
	(Ba		~							-	-		\vdash						-		-	<u> </u>				_			-				+	
	39 (~								-	┝		-								┝						 	\vdash		-		-+	
	93(°,					-				┝		\vdash	-	\vdash	-			-								 		-			-	
	Ŧ		~	_				┝	-		\vdash	┝	-		-								-					 					-	
	S	CLO,	~			9		\vdash			-	-	-			┢──	┣—				-					-								
		000	5	e		6					-		┝				-	-			-						_			<u> </u>			\dashv	ᅴ
		00.8	S	0	9	0		ļ			-	-	-	-				-			<u> </u>							 -			 		\rightarrow	
		(3	<	7	0	9			-	_			-		_													<u> </u>			<u> </u>		\rightarrow	Ξ
		0A 24.2)	S	0	0	0		_		_						-									_								_	<u> </u>
	Ŧ	(2: <	3	7		7										<u> </u>			<u> </u>	ļ														15
	selec	€ E H S		6/08	6/08	6/08																												
	ent			-/60	-/60	,/60																												
	0 (Cli	Ш'n		5/08	5/08	5/08																												
	90/1(DAI		38/2 5)8/2£	38/2 5																												
				0	_						┢	\square	┢	\square		1	\square		 			╞	\vdash					 						-
	0			222	222	244																												
s	1432	DG#	/Soil	8072	8072	7072																												TLR
pag	02	N N	/ater	SMI0	NI0	MIO																												
0	<u>Sila</u>		2																															
		g	latrix	۷	A	8		1	1	1	1	ſ	T		1									Π					1					otal
- 1	(A. 11)	1 II	2	-	-	1	1	1	1	1	£	1	1	1	1	1	1	1	1	1		1	1	1	F	1			1	1	1	.		الت

NASA JPL Data Validation Reports LDC# 19369

Volatiles

LDC Report# 19369A1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 21, 2008

LDC Report Date: September 5, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072222

Sample Identification

MW-14-5 MW-14-4** MW-14-3 MW-14-2 MW-14-1 DUPE-01-3Q08 EB-02-7/21/08 TB-02-7/21/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r²) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-14-2 and DUPE-01-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concent		
Compound	MW-19-2	DUPE-2-3Q08	RPD
Trichloroethene	8.1	7.9	2

والمرجبة بجارية والمتري والتجريبية والمراج المتري مسترينا

XVII. Field Blanks

Sample TB-02-7/21/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-02-7/21/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-02-7/21/08	Chloromethane	1.0

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

LDC Report# 19369B1

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 18, 2008
- LDC Report Date: September 4, 2008

Matrix: Water

Parameters: Volatiles

- Validation Level: EPA Level III
- Laboratory:

Sample Delivery Group (SDG): BMI08072244

Sample Identification

MW-21-5 MW-21-4 MW-21-3 MW-21-2 MW-21-1 EB-01-7/18/08 TB-01-7/18/08

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-19-5/22/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-01-7/18/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-01-7/18/08	m,p-Xylenes	0.72

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072244

No Sample Data Qualified in this SDG

.

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072244

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19369

Chromium

LDC Report# 19369A4

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site Name: NASA JPL

Collection Date: July 21, 2008

LDC Report Date: September 2, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): BMI08072222

Sample Identification

MW-14-3 MW-14-2 MW-14-1 DUPE-01-3Q08 EB-02-7/21/08 MW-14-3MS MW-14-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-14-2 and DUPE-01-3Q08 were identified as field duplicates. No chromium were detected in any of the samples.

XIV. Field Blanks

Sample EB-02-7/21/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

NASA JPL

10 Mail 144 - 14 124 24 21 20 20 20 20 20

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

LDC Report# 19369B4

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site Name: NASA

Collection Date: July 18, 2008

LDC Report Date: September 2, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

医颈骨膜 医无骨骨肌 医无间的 医牙子 医马克氏试验 医马克氏试验 化分子 网络马克马克马克马克马克马克马克

Sample Delivery Group (SDG): BMI08072244

Sample Identification

MW-21-5 MW-21-4 MW-21-3 MW-21-2 MW-21-1 EB-01-7/18/08

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

መምር እስከ መምር እና እንዲሆን እስከ እንዲሆን እ

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

V:\LOGIN\BATTELLE\JPL\19369B4.BA3

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-01-7/18/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072244

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072244

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19369

Hexavalent Chromium

LDC Report# 19369A6

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

UN SARE MERICAL CONTINUES IN THE

Project/Site	Name:	NASA JPL
--------------	-------	----------

Collection Date: July 21, 2008

LDC Report Date: September 2, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III & IV

Laboratory:

Sample Delivery Group (SDG): BMI08072222

Sample Identification

MW-14-5 MW-14-4** MW-14-3 MW-14-2 MW-14-1 DUPE-01-3Q08 EB-02-7/21/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-14-2 and DUPE-01-3Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-14-2	DUPE-01-3Q08	RPD
Perchlorate	3.21	2.80	14

X. Field Blanks

Sample EB-02-7/21/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072222

No Sample Data Qualified in this SDG

LDC Report# 19369B6

3

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site	Name:	NASA J	PL
--------------	-------	--------	----

Collection Date: July 18, 2008

LDC Report Date: September 2, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): BMI08072244

Sample Identification

MW-21-5 MW-21-4 MW-21-3 MW-21-2 MW-21-1 EB-01-7/18/08

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

STATEST WATER AND A WATER AND A STATEST A

II. Calibration

We CONTRACTOR STREET STREET

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.
IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-01-7/18/08 was identified as an equipment blank. No perchlorate was found in this blank.

nan manan ana anin ana amin'ny faritr'ora amin'ny faritr'ora amin'ny faritr'ora desima desima desima desima far

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072244

是是是我们是我的教育的教育和教育和教育和教育和教育和教育和教育教育教育教育教育教育和教育教育的主义的教育和教育和教育和教育和教育和教育和教育和教育教育和教育的教育

No Sample Data Qualified in this SDG

THE CONTRACTOR OF THE SECOND OF THE SECOND

NASA JPL Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072244

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

September 10, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 2, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19406:

SDG #	Fraction
BMI08072423, BMI07072444	Volatiles, Chromium, Perchlorate

The data validation was performed under EPA Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	[]																																			
			S.	2															Γ			Γ										Γ	Τ		34	
			∣≥	:	<u> </u>																														0	
			S						1					Γ			\mathbf{T}							\vdash								<u>†</u>	\vdash		0	
			3		\square		┢		\square	1		Γ			\square	┢	┢				\square		<u> </u>									-	+			<u>ğ</u>
			-	-					┢	-		\vdash	-		-	\vdash		-	┝	-	┣—	\vdash		┝─						┝		\vdash				ST.v
			E	-		-				-		┝		-				┡	┡		<u> </u>		<u> </u>							-	_				0	9406
		ļ	<u> </u> >		<u> </u>				<u> </u>	<u> </u>	<u> </u>						_					ļ													0	-
			l_s	4		ļ		<u> </u>	ļ				L			Ļ								<u> </u>											0	
			≥									L																							0	
			S																																0	
			≥																																0	
			S												T	Γ						\square	1												0	
			<u> </u>																			Γ													0	
			S						\square																										0	
			3											┢─																\vdash						
			5												┢							┢										<u> </u>	\vdash	_	_	
	S		5		┢		-		-				<u> </u>	┢			\vdash		-				<u> </u>						—	_			-		_	
	5		12	⊢	┢		_	_	-			<u> </u>			<u> </u>		┝																		_	
	SA		F.		_					<u> </u>						<u> </u>											_								_	
	M		15							<u> </u>				<u> </u>													-								<u> </u>	
			S	<u> </u>													 																		<u> </u>	
	bbe		>																																0	
키	ā		s																																0	
Be	an		≥																																0	
-Fig	S		S																																0	
Atts	elle		3																												_				0	
	att		S																																0	
	B		3										_															_	_							
	90		s s	<u> </u>																							-	_							_	
	94			\vdash							_																_	_							_	ion).
	#		2													_										_		_							_	alidat
	20	CLO,	٣,		-					_															_	_	_								<u> </u>) III
		30	2	ۍ ۲	7																					_									12	Leve
		9.8 8.0	S	0	0																														0	are
		(3	≥	5	9																														÷	cells
		4.2)	S	0	0																														0	other
Î	()	(52 <	≥	9	5																														1	ı (all
	elect			3/08	3/08																					Τ										fatior
	nt si	DA DU		9/23	9/23																															valic
	(clie		-	38 (C	8 0								\neg						_							+	-			\neg	┥	_		-	$- \ $	le N
	110	ATE EC'I		/02/0	/02/0																															eLev
	6	<u> </u>		60	ő		_																													dicat
				8	4																															in sli
	320	茂	, Sil	7242	7244																														~	ed Cr
ges	214	SDG	er/St	080	80																														뷥	Shad
0 pa	B		Wat	BM	BM																															
			,×				\square				\square									\square																
		LDC	Matr	۲	m																													Ī	otal	

NASA JPL Data Validation Reports LDC# 19406

Volatiles

LDC Report# 19406A1

والأع والرولانية المرابع ومرادي والمرابع

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 23, 2008

LDC Report Date: September 10, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072423

Sample Identification

MW-17-4 MW-17-3 MW-17-2 DUPE-3-3Q08 EB-04-7/23/08 TB-04-7/23-08

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/29/08	Dichlorodifluoromethane	32.0	All samples in SDG BMi08072423	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

server driver betreen s

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-17-4 and TB-04-7/23-08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-17-4	DUPE-3-3Q08	RPD
Trichloroethene	0.60	0.69	14

XVII. Field Blanks

Sample TB-04-7/23-08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-04-7/23/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072423

SDG	Sample	Compound	Flag	A or P	Reason
BMI08072423	MW-17-4 MW-17-3 MW-17-2 DUPE-3-3Q08 EB-04-7/23/08 TB-04-7/23-08	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072423

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

September 10, 2008

Project/Site Name: NASA JPL

Collection Date: July 23, 2008

LDC Report Date:

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072444

Sample Identification

MW-18-5 MW-18-4 MW-18-3 MW-18-2 DUPE-4-3Q08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

STAR 198 - CELENCENTERS, SCHWERTSTER 1997 - CAT M

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-18-3 and DUPE-4-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-18-3	RPD	
Chloroform	2.1	2.2	5
Carbon tetrachloride	18	20	11
Trichloroethene	1.2	1.3	8

XVII. Field Blanks

No field blanks were identified in this SDG.

Sample EB-04-7/23/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

a waa ahaa in adam waamii sheebiintaa ah

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19406

Chromium

LDC Report# 19406A4

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 23, 2008
- LDC Report Date: September 5, 2008
- Matrix: Water
- Parameters: Chromium
- Validation Level: EPA Level III
- Laboratory:

Sample Delivery Group (SDG): BMI08072423

Sample Identification

MW-17-4 MW-17-3 MW-17-2 DUPE-3-3Q08 EB-04-7/23/08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-17-4 and DUPE-3-3Q08 were identified as field duplicates. No chromium was detected in any of the samples.

XIV. Field Blanks

Sample EB-04-7/23/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072423

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072423

No Sample Data Qualified in this SDG

LDC Report# 19406B4

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 23, 2008
- LDC Report Date: September 5, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): BMI08072444

Sample Identification

MW-18-4 MW-18-3 MW-18-2 DUPE-4-3Q08 MW-18-4MS MW-18-4MSD

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-18-3 and DUPE-4-3Q08 were identified as field duplicates. No chromium was detected in any of the samples.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19406

Perchlorate

LDC Report# 19406A6

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site Name: NASA JPL

Collection Date: July 23, 2008

LDC Report Date: September 5, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory:

Sample Delivery Group (SDG): BMI08072423

Sample Identification

MW-17-4 MW-17-3 MW-17-2 DUPE-3-3Q08 EB-04-7/23/08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-17-4 and DUPE-3-3Q08 were identified as field duplicates. No perchlorate was detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-17-4	DUPE-3-3Q08	RPD
Perchlorate	1.00U	1.50	200

X. Field Blanks

Sample EB-04-7/23/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072423

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072423

No Sample Data Qualified in this SDG

LDC Report# 19406B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 23, 2008

LDC Report Date: September 5, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory:

ory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072444

Sample Identification

MW-18-5 MW-18-4 MW-18-3 MW-18-2 DUPE-4-3Q08 MW-18-5MS MW-18-5MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.
I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-18-3 and DUPE-4-3Q08 were identified as field duplicates. No perchlorate was detected in any of the samples with the following exceptions:

	Concentra	ation (ug/L)	
Analyte	MW-18-3	DUPE-4-3Q08	RPD
Perchlorate	37.0	36.3	2

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072444

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

September 23, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 8, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19437:

<u>SDG #</u>

Fraction

BMI08072904, Volatiles, Chromium, Perchlorate BMI08072921, BMI08072923

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

	0 pages				Í								∢	Vttac	Ime	۲ ۲																				
	PO 214320	90/10 (cli	ent select	(9	5	164	137	(Bĉ	atte	lle-	San	ō	egc	1.0	IAS	ŠĂ.	14							р А.								
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (524)A 4.2)	50 Ū (5	r (8)	314 CL	°,0.																											
Matrix:	Water/Soil			≥	S	3	S	3	S	≥	S	×	s S	< l	<u> </u>	S	≥	s	≥	s	≥	s	3	S	3	5	2	<u>></u> د	>	5	l s	≥	S	≥	S	
٨	BMI08072904	80/80/60	09/29/08	9	0	5	0	5	0																											
ш	BMI08072921	80/80/60	09/29/08	9	0	5	0	7	0																						_					
в	BMI08072921	80/80/60	09/29/08	L	0	L L	0	F	0		\vdash		-	-										 	<u> </u>	\vdash										_
ပ	BMI08072923	80/80/60	09/29/08	5	0	5	0	3	0				-														-							<u> </u>		
																																ļ	L			_
													\vdash																							
															<u> </u>												-									
																	<u> </u>										-	-		 						
																								-	┢──		-				ļ					
															 	 											-		-	<u> </u>						
											-																-	-	-						Γ	
													┝													┢	┝	\vdash		-					T	
										\square			┝	-		<u> </u>										┢	\vdash		-		-	L				
														-			 	ļ							\vdash	-	-		┝							
												-					L												-							_
													-																							
																														_					ľ	
													\vdash														-								l	
														\square																					Ι	
																															<u> </u>				<u> </u>	
																											┝									
																											· ·									
																													_							
											<u> </u>		<u> </u>	ļ												_										
												\vdash													┢										Γ	
																													_							
																		_																	Γ	
													\square																						<u> </u>	
										\neg	-+	\dashv	-	-		\square	\square																			
Total	T/LR			18	0	16	0	16	0	0	0	_	0	0	-	0	0	0	0	_	0	0	0	0	-	_			<u> </u>	-	_	<u> </u>	0	0	50	-
	Shaded cells in	Jicate Level	V validation	ו (all c	other (cells a	are Le	evel II.	l valic	lation)	_																			÷	94375	T.wpc				

NASA JPL Data Validation Reports LDC# 19437

Volatiles

LDC Report# 19437A1

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 28, 2008
- LDC Report Date: September 19, 2008
- Matrix: Water
- Parameters: Volatiles
- Validation Level: EPA Level III
- Laboratory:
- Sample Delivery Group (SDG): BMI08072904

Sample Identification

MW-4-3 MW-4-2 MW-4-1 DUPE-5-3Q08 EB-06-7/28/08 TB-06-7/28/08

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/30/08	Dichlorodifluoromethane	36.0	All samples in SDG BMI08072904	J (all detects) UJ (all non-detects)	Р

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-4-3 and DUPE-5-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concen	tration (ug/L)	
Compound	MW-4-3	DUPE-5-3Q08	RPD
Ethylbenzene	2.3	2.3	0

XVII. Field Blanks

Sample TB-06-7/28/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-06-7/28/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072904

SDG	Sample	Compound	Flag	A or P	Reason
BMI08072904	MW-4-3 MW-4-2 MW-4-1 DUPE-5-3Q08 EB-06-7/28/08 TB-06-7/28/08	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072904

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site	Name:	NASA JPL
--------------	-------	----------

Collection	Date:	July 25,	2008
------------	-------	----------	------

LDC Report Date: September 19, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory:

Sample Delivery Group (SDG): BMI08072921

Sample Identification

MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 EB-05-7/25/08 TB-05-7/25/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/30/08	Dichlorodifluoromethane	36.0	All samples in SDG BMI08072921	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-05-7/25/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-05-7/25/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-05-7/25/08	Chloroform	0.69

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072921

SDG	Sample	Compound	Flag	A or P	Reason
BMI08072921	MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 EB-05-7/25/08 TB-05-7/25/08	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072921

No Sample Data Qualified in this SDG

LDC Report# 19437C1

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 28, 2008
- LDC Report Date: September 19, 2008
- Matrix: Water
- Parameters: Volatiles
- Validation Level: EPA Level III
- Laboratory:
- Sample Delivery Group (SDG): BMI08072923

Sample Identification

MW-3-4 MW-3-3 MW-3-2 MW-3-4MS MW-3-4MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/30/08	Dichlorodifluoromethane	36.0	All samples in SDG BMI08072923	J (all detects) UJ (all non-detects)	Р

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MW-3-4MS/MSD (MW-3-4)	Trichlorofluoromethane	174 (51-156)	171 (51-156)	-	J (all detects)	A
MW-3-4MS/MSD (MW-3-4)	Bromomethane	-	-	38 (≤20)	J (all detects) UJ (all non-detects)	A

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08072923

SDG	Sample	Compound	Flag	A or P	Reason
BMI08072923	MW-3-4 MW-3-3 MW-3-2	Dichlorodifluoromethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08072923	MW-3-4	Trichlorofluoromethane	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)
BMI08072923	MW-3-4	Bromomethane	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (RPD)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08072923

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19437

Chromium

LDC Report# 19437A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 28, 2008

LDC Report Date: September 11, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072904

Sample Identification

MW-4-3 MW-4-2 MW-4-1 DUPE-5-3Q08 EB-06-7/28/08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-4-3 and DUPE-5-3Q08 were identified as field duplicates. No chromium was detected in any of the samples.

· 你知道我们的你们的你们的你们的你们的你?""你们的你的,你们的你们的吗?"他们的问题,我们的你们的问题都能能能

XIV. Field Blanks

Sample EB-06-7/28/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072904

No Sample Data Qualified in this SDG

A44.792 A10070

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072904

No Sample Data Qualified in this SDG

LDC Report# 19437B4

and see a standard for the second second

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

CENTRAL CARGE SEA CARD OF A CARD SEA CONTRACT SEA CARD

Collection Date: July 25, 2008

LDC Report Date: September 16, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory:

ry: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072921

Sample Identification

MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 EB-05-7/25/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-05-7/25/08 was identified as an equipment blank. No metal contaminants were found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072921

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072921

No Sample Data Qualified in this SDG

LDC Report# 19437C4

Laboratory Data Consultants, Inc. Data Validation Report

September 16, 2008

Project/Site Name: NASA JPL

Collection Date: July 28, 2008

LDC Report Date:

Matrix:

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Water

Sample Delivery Group (SDG): BMI08072923

Sample Identification

MW-3-4 MW-3-3 MW-3-2 MW-3-4MS MW-3-4MSD
Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

በላይ የላይ በላይ በ የርጉ የርጉ እስከ ያምን ይሆንን የግሥላ የላይ የ

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08072923

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08072923

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19437

Perchlorate

LDC Report# 19437A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 28, 2008

LDC Report Date: September 11, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072904

Sample Identification

MW-4-3 MW-4-2 MW-4-1 DUPE-5-3Q08 EB-06-7/28/08

Introduction

ann ar weant ann ann an the se

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

Less Congregers de Lors Argentierse de l'entre de

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-4-3 and DUPE-5-3Q08 were identified as field duplicates. No perchlorate was detected in any of the samples.

X. Field Blanks

Sample EB-06-7/28/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072904

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072904

No Sample Data Qualified in this SDG

LDC Report# 19437B6

Laboratory Data Consultants, Inc. Data Validation Report

September 16, 2008

Water

Perchlorate

Project/Site Name:	NASA	JPL
--------------------	------	-----

Collection Date: July 25, 2008

LDC Report Date:

Matrix:

Parameters:

Validation Level: EPA Level III & IV

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072921

Sample Identification

MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 EB-05-7/25/08 MW-20-4MS MW-20-4MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-05-7/25/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072921

nga ng pangangan <mark>pan</mark>a kapada kaburan kabar

No Sample Data Qualified in this SDG

NASA JPL Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072921

No Sample Data Qualified in this SDG

LDC Report# 19437C6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: July 28, 2008

LDC Report Date: September 16, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08072923

Sample Identification

MW-3-4 MW-3-3 MW-3-2

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08072923

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08072923

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

September 25, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 15, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19471:

<u>SDG #</u>

Fraction

BMI08073040, BMI08073120, Volatiles, Chromium, Wet Chemistry

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

٦			10				<u> </u>			<u> </u>	Г	ľ	l i	<u> </u>	Γ	Γ	Ī	T	I	 r -	r		İ		 			 		2	
			~ ~			$\left - \right $	 	┝		┣										 	┣							 	 	9	
			\$							<u> </u>															 			 <u> </u>			
			S				 _		<u> </u>		<u> </u>			<u> </u>		_		-		_					 			 			
			≥				<u> </u>		ļ					<u> </u>	<u> </u>															0	I
			S				 L			L		ļ	ļ		ļ	-				 ļ	ļ				 					-	
			3											L											 		ļ			0	4
			S																											0	
			3																											0	
			s																											0	
			W																											0	
			S				 								 		\square	┢		 1	 									0	
			N																											0	
			s																											0	
			N									1													 					0	
			s																											0	
	ה		×					\vdash				\vdash															-			0	
	J. J		s S									\vdash								$\left \right $										_	
	SA		~				 													 							-				
	Z		<u>ہ</u> ا							-		╞		-	┢		-			 \vdash						-	-				
	0 /		/ 5					-				-		-						 <u> </u>							<u> </u>				
	ieg		5					-		_										 -						_				-	
nt 1	Ō	14.0	s '	0	0	0						<u> </u>	_	_						-							-				
ame	Sar	<u> </u>	>	9	~	<u></u>						<u> </u>															-			÷	
tact	<u>e</u>	-PO	S	1	0	0	 					<u> </u>								 <u> </u>					 			 			
¥	tel	0.0	2	•	3	0														 ļ										<u> </u>	
	Bat	N-20	S	1	0	0						ļ																		-	
	1 (I	Ŭ. Ŭ.	×	'	З	0						<u> </u>		L	ļ	ļ	ļ	ļ												3	
	47	N- ⁵ ()	S	'	0	o						<u> </u>													 	ļ	ļ	 	 	0	
	#16	о Эс У	>	ı	Э	0								<u> </u>													<u> </u>			3	
	Ö	0.0) 0.0)	S	'	0	0																								0	
,		(30 CI *	≥	1	ю	0																								3	
		0.8)	S	0	0	0																			 					0	
		(50 C	8	7	5	ିର																								14	
)A 1.2)	S	0	0	0																								0	
		(52/	W	7	12	2																								21	:
	elect	_ W w		/08	/08	/08																									:
	nt se	DAT (3)		0/06	0/06	90/0																									:
	(clie			8 1	1	8	 		┝─															-							-
	/10 (ATE		/15/0	/15/0	/15/0																									
	6	<u> </u>		60	60	60																									:
				Q	0	0																									:
	320	<u></u> #	<u>si</u>	7304	7312	7312																								2	
ges	214	SDC	er/S	080	1080	1080																								Z	i
0 pa	Ъ		Wat	BM	BM	BM																									
			ix:			\square			┡																 						
			Mat	∢	в	۵																								ote	

NASA JPL Data Validation Reports LDC# 19471

Volatiles

LDC Report# 19471A1

Laboratory Data Consultants, Inc. Data Validation Report

September 24, 2008

Water

Volatiles

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 29, 2008

LDC Report Date:

Matrix:

Parameters:

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073040

Sample Identification

MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 TB-07-07/29/08 MW-23-3MS MW-23-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/5/08	Bromomethane Trichlorofluoromethane Methyl-tert-butyl ether Carbon tetrachloride Dibromomethane Bromodichloromethane Bromoform	34.1 67.0 30.9 34.3 32.4 31.7 32.1	All samples in SDG BMI08073040	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0805K	Trichlorofluoromethane Bromoform	167 (50-160) 132 (70-131)	All samples in SDG BMI08073040	J (all detects) J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-07-07/29/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-07-07/29/08 was identified as an equipment blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08073040

SDG	Sample	Compound	Flag	A or P	Reason
BMi08073040	MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 TB-07-07/29/08	Bromomethane Trichlorofluoromethane Methyl-tert-butyl ether Carbon tetrachloride Dibromomethane Bromodichloromethane Bromoform	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08073040	MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 TB-07-07/29/08	Trichlorofluoromethane Bromoform	J (all detects) J (all detects)	Ρ	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08073040

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

Collection Date: July 30, 2008

LDC Report Date: September 25, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073120

Sample Identification

MW-11-4 MW-11-3** MW-11-2 MW-11-1 DUPE-06-3Q08 MW-22-3** MW-22-2 MW-22-1 EB-08-07/30/08 TB-08-07/30/08 MW-11-2MSD MW-11-2MSD MW-22-1MS MW-22-1MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 14 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/5/08	Bromomethane Trichlorofluoromethane Methyl-tert-butyl ether Carbon tetrachloride Dibromomethane Bromodichloromethane Bromoform	34.1 67.0 30.9 34.3 32.4 31.7 32.1	All samples in SDG BMI08073120	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W080KL	Trichlorofluoromethane Bromoform	167 (50-160) 132 (70-131)	All samples in SDG BMI08073120	J (all detects) J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-11-4 and DUPE-06-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples.

XVII. Field Blanks

Sample TB-08-07/30/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-08-07/30/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-08-07/30/08	Chloroform	0.51

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08073120

SDG	Sample	Compound	Flag	A or P	Reason
BMI08073120	MW-11-4 MW-11-3** MW-11-2 MW-11-1 DUPE-06-3Q08 MW-22-3** MW-22-2 MW-22-1 EB-08-07/30/08 TB-08-07/30/08	Bromomethane Trichlorofluoromethane Methyl-tert-butyl ether Carbon tetrachloride Dibromomethane Bromodichloromethane Bromoform	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08073120	MW-11-4 MW-11-3** MW-11-2 MW-11-1 DUPE-06-3Q08 MW-22-3** MW-22-3 MW-22-2 MW-22-1 EB-08-07/30/08 TB-08-07/30/08	Trichlorofluoromethane Bromoform	J (all detects) J (all detects)	Ρ	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08073120

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19471

Chromium

LDC Report# 19471A4

101,000,50,00,00

Laboratory Data Consultants, Inc. Data Validation Report

September 17, 2008

Project/Site Name: NASA JPL

Collection Date: July 30, 2008

LDC Report Date:

Matrix:

Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073040

Sample Identification

MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 MW-23-3MS MW-23-3MSD

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
8/7/08	CCV (0:16)	Chromium	112 (90-110)	All samples in SDG BMI08073040	J (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-07-07/29/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08073040

SDG	Sample	Analyte	Flag	A or P	Reason
BMI08073040	MW-23-4 MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08	Chromium	J (all detects)	Ρ	Calibration (CCV %R)

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08073040

No Sample Data Qualified in this SDG

and the second state of the sta

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site N	lame:	NASA .	JPL
Project/Sile in	Name:	NASA .	JPI

Collection Date: July 30, 2008

LDC Report Date: September 22, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073120

Sample Identification

MW-11-3** MW-11-2 MW-11-1 MW-22-3** MW-22-2 MW-22-1 EB-08-07/30/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

いわいて つかか かたい いろく

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Sample EB-08-07/30/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08073120

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08073120

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19471

Wet Chemistry

LDC Report# 19471A6

n na shi ka ka shi kazi bi na shikin na s

Laboratory Data Consultants, Inc. Data Validation Report

September 17, 2008

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 29, 2008

LDC Report Date:

Matrix:

Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073040

Sample Identification

MW-23-3 MW-23-2 MW-23-1 EB-07-07/29/08 MW-23-3MS MW-23-3MSD

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

Sample EB-07-07/29/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08073040

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08073040

No Sample Data Qualified in this SDG

LDC Report# 19471B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 30, 2008

LDC Report Date: September 22, 2008

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08073120

Sample Identification

MW-11-4 MW-11-3** MW-11-2 MW-11-1 DUPE-06-3Q08 MW-22-3** MW-22-2 MW-22-1 EB-08-07/30/08 MW-11-1MS MW-11-1MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate, and Sulfate, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-11-2 and DUPE-06-3Q08 were identified as field duplicates. No contaminant concentrations were detected in any of the samples.

X. Field Blanks

Sample EB-08-07/30/08 was identified as an equipment blank. No contaminant concentrations were found in this blank.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG BMI08073120

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BMI08073120

No Sample Data Qualified in this SDG

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

September 25, 2008

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 22, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19519:

SDG # Fraction BMI08080155, BMI08080506, BMI08080649, BMI08081223, BMI08081251, BMI08081320 Volatiles, Chromium, Wet Chemistry

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

Attachment 1 No.No. Ctool Ct	Alliaction 1 Alliaction 1 1) 0 00,00,0 0,00,0	
Novi (000) Statelle-San Diego / NASA JPL) Novi (000) 000 <t< td=""><td>19 (Battelle-San Diego / NASA JPL)</td><td>0 pages</td></t<>	19 (Battelle-San Diego / NASA JPL)	0 pages
MOV: (300) (300) (314) (300) (314) (300) (314) (300) (314) (300) (314) (310) (316) (3	M. M.M. M.M.M. M.M.M.M. M.M.M.M. M.M.M.M. M.M.M.M.M. M.M.M.M.M.M. M.M.M.M.M.M.M.M.M.M.M.M.M.M.	PO 214320 90/10 (client select) LDC #195
	M M	(3) (3)
	1 1	x: Water/Soil W S W S W S W S
	1 1	BMI08080155 09/22/08 09/30/08 7 0 5 0
	3 0 3 0 4 0	BMI08080155 09/22/08 09/30/08 1 0 0 0
		BMI08080506 09/22/08 09/30/08 18 0 15 0 3 0 3 0
		BMI08080649 09/22/08 09/30/08 2 0 1 0 3 0 3
4 0	0 0	BMI08081223 09/22/08 09/30/08 3 0 5 0
	3 0 0 3 0	BMI08081251 09/22/08 09/30/08 3 0 2 0 4 0 4
		BMI08081320 09/22/08 09/30/08 2 0 1 0 3 0 3
		BMI08081320 09/22/08 09/30/08 1 0 1 0 0 0 0 0
	1 1	
	1 1	
	1 1	
	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 1	
$ \begin{vmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	13 0 0 0 0 0 0 0 0 153 10 1 </td <td></td>	
$ \begin{vmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 153	
13 0	13 0 13 0 0 0 0 0 0 0 153	
13 0 13 0	0 13 0 13 0<	
13 0 13 0 34 0	0 13 0 13 0<	
13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 10 0 0 10 <	0 13 0 13 0 34 0 0 0 0 0 0 0 0 0	
	19519ST wod	T/LR 37 0 30 0 13 0 13

NASA JPL Data Validation Reports LDC# 19519

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

- Project/Site Name: NASA JPL
- Collection Date: July 31, 2008
- LDC Report Date: September 25, 2008
- Matrix: Water
- Parameters: Volatiles
- Validation Level: EPA Level III & IV
- Laboratory:
- Sample Delivery Group (SDG): BMI08080155

Sample Identification

MW-12-5 MW-12-4** MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08 TB-09-7/31/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 8 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r²) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/5/08	Bromomethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride	35.1 65.2 30.6 34.6	All samples in SDG BMI08080155	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0805L	Trichlorofluoromethane Bromomethane 1,1,1-Trichloroethane Carbon tetrachloride	165 (70-130) 135 (70-130) 131 (70-130) 134 (70-130)	All samples in SDG BMI08080155	J (all detects) J (all detects) J (all detects) J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-12-2 and DUPE-7-3Q08 were identified as field duplicates. No volatiles were detected in any of the samples.

XVII. Field Blanks

Sample TB-09-7/31/08 was identified as a trip blank. No volatile contaminants were found in this blank.

Sample EB-09-7/31/08 was identified as an equipment blank. No volatile contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)
EB-09-7/31/08	Chloroform	0.71

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08080155

SDG	Sample	Compound	Flag	A or P	Reason
BMI08080155	MW-12-5 MW-12-4** MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08 TB-09-7/31/08	Bromomethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08080155	MW-12-5 MW-12-4** MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08 TB-09-7/31/08	Trichlorofluoromethane Bromomethane 1,1,1-Trichloroethane Carbon tetrachloride	J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08080155

No Sample Data Qualified in this SDG

LDC Report# 19519B1

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	NASA JPL
Collection Date:	August 1 through August 4, 2008
LDC Report Date:	September 24, 2008
Matrix:	Water
Parameters:	Volatiles
Validation Level:	EPA Level III
Laboratory:	Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080506

Sample Identification

MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 TB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 TB-10-8/1/08 MW-26-2 MW-26-1 MW-24-1MS MW-24-1MSD MW-25-3MS MW-25-3MSD

Introduction

This data review covers 18 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore gualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/6/08	Chloromethane Chloroethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	33.0 37.3 81.0 34.0 39.5 31.0	All samples in SDG BMI08080506	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Although matrix spike (MS) and matrix spike duplicate (MSD) samples were not required by the method, MS and MSD samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0806K	Chloromethane	67 (70-130)	All samples in SDG BMi08080506	J (all detects) UJ (all non-detects)	P
LCSMS15W0806K	Chloroethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	137 (70-130) 181 (70-130) 134 (70-130) 140 (70-130) 131 (70-130)	All samples in SDG BMI08080506	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Samples TB-11-08/04/08 and TB-10-8/1/08 were identified as trip blanks. No volatile contaminants were found in these blanks.

Samples EB-11-08/04/08 and EB-10-8/1/08 were identified as equipment blanks. No volatile contaminants were found in these blanks with the following exceptions:

Equipment Blank ID	Compound	Concentration (ug/L)		
EB-11-08/04/08	Chloroform	0.57		
EB-10-8/1/08	Chloroform	0.50		

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08080506

SDG	Sample	Compound	Flag	A or P	Reason
BMI08080506	MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 TB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 TB-10-8/1/08 MW-26-2 MW-26-1	Chloromethane Chloroethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08080506	MW-24-3 MW-24-2 BB-11-08/04/08 TB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 TB-10-8/1/08 MW-26-2 MW-26-1	Chloromethane	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (%R)
BMI08080506	MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 TB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 TB-10-8/1/08 MW-26-2 MW-26-1	Chloroethane Trichlorofluoromethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08080506

No Sample Data Qualified in this SDG
LDC Report# 19519C1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: August 5, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080649

Sample Identification

MW-7 TB-12-08/05/08

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/14/08	Bromomethane	49.6	All samples in SDG BMI08080649	J (all detects) UJ (all non-detects)	Р
	menioronuoromeniarie	33,5		UJ (all non-detects)	

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0814K	Bromomethane Trichlorofluoromethane	150 (70-130) 134 (70-130)	All samples in SDG BMI08080649	J (all detects) J (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-12-08/05/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08080649

SDG	Sample	Compound	Flag	A or P	Reason
BMI08080649	MW-7 TB-12-08/05/08	Bromomethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08080649	MW-7 TB-12-08/05/08	Bromomethane Trichlorofiuoromethane	J (all detects) J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08080649

No Sample Data Qualified in this SDG

LDC Report# 19519D1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: August 8, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08081223

Sample Identification

MW-5 MW-6 TB-13-08/08/08

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/15/08	Bromomethane Trichlorofluoromethane 2,2-Dichloropropane	47.9 50.6 30.5	All samples in SDG BMI08081223	J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0815K	Bromomethane Trichlorofluoromethane 2,2-Dichloropropane	148 (70-130) 151 (70-130) 131 (70-130)	All samples in SDG BMI08081223	J (all detects) J (all detects) J (all detects)	Ρ

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-13-08/08/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08081223

SDG	Sample	Compound	Flag	A or P	Reason
BMI08081223	MW-5 MW-6 TB-13-08/08/08	Bromomethane Trichlorofluoromethane 2,2-Dichloropropane	J (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
BMI08081223	MW-5 MW-6 TB-13-08/08/08	Bromomethane Trichlorofluoromethane 2,2-Dichloropropane	J (all detects) J (all detects)	Ρ	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08081223

No Sample Data Qualified in this SDG

LDC Report# 19519E1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA J

Collection Date: August 11, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08081251

Sample Identification

MW-13 MW-8 TB-14-08/11/08

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/14/08	Bromomethane Trichlorofluoromethane	49.6 33.5	All samples in SDG BMI08081251	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	P .

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0814K	Bromomethane Trichlorofluoromethane	150 (70-130) 134 (70-130)	All samples in SDG BMI08081251	J (all detects) J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-14-08/11/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08081251

SDG	Sample	Compound	Flag	A or P	Reason
BMI08081251	MW-13 MW-8 TB-14-08/11/08	Bromomethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08081251	MW-13 MW-8 TB-14-08/11/08	Bromomethane Trichlorofluoromethane	J (all detects) J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08081251

No Sample Data Qualified in this SDG

LDC Report# 19519F1

Laboratory Data Consultants, Inc. Data Validation Report

September 24, 2008

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: August 12, 2008

LDC Report Date:

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08081320

Sample Identification

MW-16 MW-10** TB-15-8/12/08

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/14/08	Bromomethane Trichlorofluoromethane	49.6 33.5	All samples in SDG BMI08081320	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCSMS15W0814K	Bromomethane Trichlorofluoromethane	150 (70-130) 134 (70-130)	All samples in SDG BMI08081320	J (all detects) J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-15-8/12/08 was identified as a trip blank. No volatile contaminants were found in this blank.

NASA JPL Volatiles - Data Qualification Summary - SDG BMI08081320

SDG	Sample	Compound	Flag	A or P	Reason
BMI08081320	MW-16 MW-10** TB-15-8/12/08	Bromomethane Trichlorofluoromethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
BMI08081320	MW-16 MW-10** TB-15-8/12/08	Bromomethane Trichlorofluoromethane	J (all detects) J (all detects)	Р	Laboratory control samples (%R)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG BMI08081320

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19519

Chromium

LDC Report# 19519A4

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: July 31, 2008
- LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory:

Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080155

Sample Identification

MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MW-12-2 and DUPE-7-3Q08 were identified as field duplicates. No chromium was detected in any of the samples.

XIV. Field Blanks

Sample EB-09-7/31/08 was identified as an equipment blank. No chromium was found in this blank.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08080155

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08080155

No Sample Data Qualified in this SDG

LDC Report# 19519B4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	August 1 through August 4, 2008
LDC Report Date:	September 24, 2008
Matrix:	Water
Parameters:	Chromium
Validation Level:	EPA Level III
Laboratory:	Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080506

Sample Identification

MW-24-4 MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-3 MW-25-1 EB-10-8/1/08 MW-26-2 MW-26-1 MW-24-1MS MW-24-1MSD

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

Samples EB-11-08/04/08 and EB-10-8/1/08 were identified as equipment blanks. No chromium was found in these blanks.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08080506

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08080506

No Sample Data Qualified in this SDG

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: August 5, 2008
- LDC Report Date: September 24, 2008
- Matrix: Water
- Parameters: Chromium
- Validation Level: EPA Level III
- Laboratory: Alpha Analytical, Inc.
- Sample Delivery Group (SDG): BMI08080649
- Sample Identification
- MW-7
Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08080649

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08080649

No Sample Data Qualified in this SDG

LDC Report# 19519D4

.

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: August 8, 2008
- LDC Report Date: September 24, 2008
- Matrix: Water
- Parameters: Chromium
- Validation Level: EPA Level III
- Laboratory: Alpha Analytical, Inc.
- Sample Delivery Group (SDG): BMI08081223

Sample Identification

MW-5 MW-6 MW-15 MW-5MS MW-5MSD

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08081223

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08081223

No Sample Data Qualified in this SDG

LDC Report# 19519E4

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: August 11, 2008
- LDC Report Date: September 24, 2008
- Matrix: Water
- Parameters: Chromium
- Validation Level: EPA Level III
- Laboratory: Alpha Analytical, Inc.
- Sample Delivery Group (SDG): BMI08081251

Sample Identification

MW-13 MW-8

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08081251

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08081251

No Sample Data Qualified in this SDG

LDC Report# 19519F4

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site	Name:	NASA	JPL
--------------	-------	------	-----

Collection Date: August 12, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory:

Sample Delivery Group (SDG): BMI08081320

Sample Identification

MW-16 MW-10**

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

XIV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG BMI08081320

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG BMI08081320

No Sample Data Qualified in this SDG

NASA JPL Data Validation Reports LDC# 19519

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 31, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III & IV

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080155

Sample Identification

MW-12-5 MW-12-4** MW-12-3 MW-12-2 MW-12-1 DUPE-7-3Q08 EB-09-7/31/08 MW-12-4MS MW-12-4MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MW-12-2 and DUPE-7-3Q08 were identified as field duplicates. No perchlorate was detected in any of the samples.

X. Field Blanks

Sample EB-09-7/31/08 was identified as an equipment blank. No perchlorate was found in this blank.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08080155

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08080155

No Sample Data Qualified in this SDG

LDC Report# 19519B6

. . . .

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	August 1 through August 4, 2008
LDC Report Date:	September 24, 2008
Matrix:	Water
Parameters:	Wet Chemistry
Validation Level:	EPA Level III
Laboratory:	Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080506

Sample Identification

MW-24-3 MW-24-2 MW-24-1 EB-11-08/04/08 MW-25-5 MW-25-4 MW-25-3 MW-25-3 MW-25-2 MW-25-1 EB-10-8/1/08 MW-26-2 MW-26-1 MW-24-1MS MW-24-1MSD

Introduction

This data review covers 14 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

V:\LOGIN\BATTELLE\JPL\19519B6.BA3

X. Field Blanks

Samples EB-11-08/04/08 and EB-10-8/1/08 were identified as equipment blanks. No contaminant concentrations were found in these blanks.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG BMI08080506

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BMI08080506

No Sample Data Qualified in this SDG

LDC Report# 19519C6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NASA JPL

Collection Date: August 5, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08080649

Sample Identification

MW-7 MW-7MS MW-7MSD

V:\LOGIN\BATTELLE\JPL\19519C6.BA3

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG BMI08080649

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BMI08080649

No Sample Data Qualified in this SDG

LDC Report# 19519D6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: August 8, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Perchlorate

Validation Level: EPA Level III

Laboratory: Alpha Analytical, Inc.

Sample Delivery Group (SDG): BMI08081223

Sample Identification

MW-5 MW-6

V:\LOGIN\BATTELLE\JPL\19519D6.BA3
Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Perchlorate - Data Qualification Summary - SDG BMI08081223

No Sample Data Qualified in this SDG

NASA JPL

Perchlorate - Laboratory Blank Data Qualification Summary - SDG BMI08081223

No Sample Data Qualified in this SDG

LDC Report# 19519E6

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: August 11, 2008
- LDC Report Date: September 24, 2008
- Matrix: Water
- Parameters: Wet Chemistry
- Validation Level: EPA Level III
- Laboratory: Alpha Analytical, Inc.
- Sample Delivery Group (SDG): BMI08081251

Sample Identification

MW-13 MW-8 MW-13MS MW-13MSD

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Hours From Sample Collection Until Analysis	Required Holding Time (in Hours) From Sample Collection Until Analysis	Flag	A or P
MW-13	Orthophosphate as P	49.75	48	J (all detects) UJ (all non-detects)	A

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
8/12/08	ICV	Orthophosphate as P	81.6 (90-110)	MW-13MS MW-13MSD	J (all detects) UJ (all non-detects)	Ρ
8/13/08	CCV (1228AM)	Orthophosphate as P	87.0 (90-110)	MW-13MS MW-13MSD	J (all detects) UJ (all non-detects)	Ρ

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG BMI08081251

SDG	Sample	Analyte	Flag	A or P	Reason
BMI08081251	MW-13	Orthophosphate as P	J (all detects) UJ (all non-detects)	A	Technical holding times

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BMI08081251

No Sample Data Qualified in this SDG

LDC Report# 19519F6

Laboratory Data Consultants, Inc. Data Validation Report

Alpha Analytical, Inc.

Project/Site	Name:	NASA	JPL

Collection Date: August 12, 2008

LDC Report Date: September 24, 2008

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory:

Sample Delivery Group (SDG): BMI08081320

Sample Identification

MW-16 MW-10** MW-16MS MW-16MSD MW-10MS MW-10MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate, and EPA Method 314.0 for Perchlorate.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG BMI08081320

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BMI08081320

No Sample Data Qualified in this SDG