ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

This attachment summarizes the field quality assurance, laboratory quality assurance, data verification and data validation procedures utilized for the JPL groundwater monitoring program. Data validation was performed by an independent contractor, Laboratory Data Consultants, Inc. of Carlsbad, California. Data verification and validation indicated that the all volatile organic carbon (VOC), perchlorate, and metal results obtained from the third quarter 2013 groundwater monitoring event were acceptable for their intended use of characterizing the aquifer quality.

ATTACHMENT 1: QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

Field and laboratory QC samples were collected and analyzed to fulfill quality requirements. Proper sample collection and handling procedures were utilized to ensure the integrity of the analytical results. A comprehensive quality assurance and quality control (QA/QC) plan for groundwater monitoring is described in the *Work Plan for Performing a Remedial Investigation/Feasibility Study* (Ebasco, 1993).

FIELD QUALITY ASSURANCE/QUALITY CONTROL

The field QA/QC samples collected for JPL groundwater monitoring included field duplicate samples, equipment rinsate blanks and trip blanks. The QC sample results were used for the qualitative evaluation of the data. Table 1-1 summarizes analytical results for the field quality control samples during the third quarter 2013 groundwater monitoring event.

Field Duplicate Samples. Duplicate samples were collected to evaluate the precision of the sample collection process. Duplicate samples for volatile organic compounds (VOCs), perchlorate and metals were collected from monitoring wells MW-3 (Screen 2), MW-11 (Screen 2), MW-18 (Screen 4), MW-19 (Screen 5), MW-21 (Screen 4) and MW-25 (Screen 3), with the exception that MW-19 (Screen 5) was not sampled for metals. The analytical results for the field duplicate samples were comparable to the results of the original groundwater samples for VOCs (Table 1) and Metals (Table 2).

Equipment Rinsate Blanks. Equipment rinsate blanks were collected each day that nondedicated sampling equipment was used. The equipment rinsate blanks, consisting of distilled water run through the sampling equipment after decontamination, were analyzed for all contaminants of concern to monitor possible cross-contamination of the samples due to inadequate decontamination. One VOC (toluene) and total chromium were detected in the equipment blanks as shown in Table 1-1. The toluene detected concentrations were below the reporting limit (0.5 μ g/L). Toluene is a common laboratory chemical and may have been introduced into the equipment blank samples during sample processing in the laboratory. Total chromium was present in many of the field samples and detected concentrations in the equipment blanks may have occurred due to the decontamination process. The source of the contamination could not be determined. Detected concentrations in the equipment blanks were compared to the detected concentrations in the monitoring wells during the data validation process described below to determine if data validation qualifiers were necessary. No other VOC contaminants or TICs were detected in the equipment blanks as shown in Table 1-1.

Trip Blanks. Trip blanks, which consisted of reagent-grade water in vials transported with the sample bottles to and from the field, were submitted to the laboratory with each shipment of groundwater samples. Trip blanks were used to help identify cross-contamination of groundwater samples during transport and sample handling procedures. No VOC contaminants, metals or TICs were detected in the trip blanks as shown in Table 1-1.

Source Blank. A source blank which consisted of distilled water used by sampling personnel for equipment decontamination was collected during this sampling event. This QC sample serves as a check for any contamination present in the source water. One VOC (toluene) was detected in the source blanks as shown in Table 1-1. The toluene detected concentrations were below the reporting limit ($0.5 \mu g/L$). Toluene is a common laboratory chemical and may have been introduced into the source blank samples during sample processing in the laboratory. The source of the contamination could not be determined. Detected concentrations in the source blank were compared to the detected concentrations in the monitoring wells during the data validation process described below to determine if data validation qualifiers were necessary. No other VOC contaminants or TICs were detected in the source blank as shown in Table 1-1.

LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

Laboratory QC samples included surrogate compounds (for VOC analyses), matrix spike samples, blank spike samples, and method blanks. The results of the laboratory QC samples were used by the laboratory to determine the accuracy and precision of the analytical techniques, and to identify anomalous results due to laboratory contamination or instrument malfunction.

DATA VERIFICATION AND VALIDATION

The purpose of data verification and validation is to assure that the data collected meet the data quality objectives (DQOs) outlined in the Quality Assurance Project Plan of the Groundwater Monitoring Plan (Ebasco, 1993).

Data Verification. Data verification is a review of the analytical data that includes confirming that the sample identification numbers on the laboratory reports match those on the chain-of-custody records. Data verification also includes a review of the analytical data reports to confirm that all samples were analyzed and all required analytes were quantified for each sample.

Data Validation. Data validation is a systematic review of the analytical data to determine the compliance with established method performance criteria. Validation of a data package included review of the technical holding time requirements, review of sample preparation, review of the initial and continuing calibration data, review and recalculation of the laboratory QC sample data, review of the equipment performance, reconciliation of the raw data with the reduced results, identification of data anomalies, and qualification of data to identify data usability limitations.

Data validation was performed by an independent contractor, Laboratory Data Consultants, Inc. (LDC) of Carlsbad, CA. All of the data provided by BC Laboratories, Inc., of Bakersfield, California were validated. Ninety percent of the data were subjected to Level III validation and ten percent of the data were subjected to Level IV validation in accordance with the EPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data Review (U.S. EPA, 2008; 2010). *Data Validation Qualifiers.* Analytical data were qualified based on the data validation. Data qualifiers were assigned in accordance with EPA guidelines.

All samples were analyzed within the analytical holding times. Data validation indicated that the all of the data from the third quarter 2013 groundwater monitoring event were acceptable for their intended use of characterizing aquifer quality.

The data validation reports are included in Attachment 2.

REFERENCES

- Ebasco. 1993. *Work Plan for Performing a Remedial Investigation/Feasibility Study*. National Aeronautics and Space Administration Jet Propulsion Laboratory, Pasadena, California. December.
- U.S. EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. June.
- U.S. EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. January.

TABLE 1-1 SUMMARY OF CONTAMINANTS DETECTED IN QUALITY CONTROL SAMPLES COLLECTED DURING THE JUL 2013 SAMPLING EVENT

(All concentrations reported in µg/L.)

Blank Type	Sample ID Number	Sampling Location(s)	Total Chromium	Methylene Chloride	1,2,3- Trichloropropane	2-Butanone	Other Organic Compounds		TICs		
EQUIPMENT BLANK	EB-1-7/15/13	MW-19, MW-20	3 U	0.5 U	1 U	10 U	Toluene 0	0.17 J		í l	
EQUIPMENT BLANK	EB-2-7/16/13	MW-14, MW-24	0.77 J	0.5 U	1 U	10 U	Toluene 0	0.16 J			
EQUIPMENT BLANK	EB-3-7/17/13	MW-17, MW-18	0.71 J	0.5 U	1 U	10 U	Toluene 0	0.14 J			
EQUIPMENT BLANK	EB-4-7/18/13	MW-22, MW-25, MW-26	0.67 J	0.5 U	1 U	10 U	Toluene 0	0.11 J			
EQUIPMENT BLANK	EB-5-7/19/13	MW-3, MW-23	3 U	0.5 U	1 U	10 U	Toluene 0	0.15 J			
EQUIPMENT BLANK	EB-6-7/22/13	MW-4, MW-12	3 U	0.5 U	1 U	10 U	Toluene 0	0.11 J			
EQUIPMENT BLANK	EB-7-7/23/13	MW-11, MW-21	3 U	0.5 U	1 U	10 U	Toluene 0	0.11 J			
SOURCE BLANK	SB-1-7/15/13		3 U	0.5 U	1 U	10 U	Toluene 0	0.13 J			
SOURCE BLANK	SB-2-7/19/13		3 U	0.5 U	1 U	10 U	Toluene 0	0.16 J			
TRIP BLANK	TB-1-7/15/13	MW-19, MW-20	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-2-7/16/13	MW-14, MW-24	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-3-7/17/13	MW-17, MW-18	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-4-7/18/13	MW-22, MW-25, MW-26	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-5-7/19/13	MW-3, MW-23	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-6-7/22/13	MW-4, MW-12	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-7-7/23/13	MW-11, MW-21	NA	0.5 U	1 U	10 U					
TRIP BLANK	TB-8-7/24/13	MW-8, MW-13, MW-15, MW-16	NA	0.5 U	1 U	10 U				1	
TRIP BLANK	TB-9-7/25/13	MW-5, MW-6, MW-7, MW-10	NA	0.5 U	1 U	10 U					
Notes											
NA	Not Analyzed										
J	Analyte concentration is a	an estimated value									
U	Analyte was analyzed for	but not detected at or above the stated	limit								

This attachment contains the data validation reports performed by an independent subcontractor, Laboratory Data Consultants, Inc. (LDC) of Carlsbad, California.

August 21, 2013

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 14, 2013. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 30230:

<u>SDG #</u>	<u>Fraction</u>
13-14762 13-14878 13-14991	Volatiles, Chromium, Wet Chemistry

The data validation was performed under EPA Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Pèr Gona

Pei Geng Project Manager/Senior Chemist

	HC												At	tach	men	t 1																			
	90/10 (client selec	ct)						LDO	C #3	302	30 ((Ba	ttel	le-S	San	Die	ego	1 N	IAS	A J	PL)													
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (524	DA 4.2)	Chroi (20) 200	mium 0.8/).7)	CI, 5 NO (30	SO₄ ₃-N 0.0)	NO (35:	₂-N 3.2)	O-F (36)	2O₄ 5.1)	CL (314	O₄ 4.0)	Cr((71	VI) 96)																		
Matrix	Water/Soil		<u> (28. V</u>	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s
A	13-14762	08/14/13	09/05/13	15	0	12	0	-	-	-	-	-	-	15	0	9	0		L,						<u> </u>	 									
A	13-14762	08/14/13	09/05/13	Я́С	0	1	0	-	-	-	-	-	-	1	0	1	0						_												
В	13-14878	08/14/13	09/05/13	13	0	12	0	1	0	4	0	4	0	14	0	12	0													 					
c	13-14991	08/14/13	09/05/13	12	0	11	0	-	-	-	-	-	-	12	0	11	0																		
																												 							
		ļ	ļ					-																						 					
┝──╄						L		 																		┣									
			<u> </u>		 																						<u> </u>								
$ \rightarrow $			ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>											<u> </u>	┣—									-	 					-
				┞	<u> </u>			-										~												 					_
┝──┼			<u> </u>					_																					<u> </u>						
	e					<u> </u>														<u> </u>				-	<u> </u>				<u> </u>						
																																			\neg
\vdash	· · · · · · · · · · · · · · · · · · ·	+		-		┣—	<u> </u>			<u> </u>	<u> </u>		<u> </u>					}	<u> </u>		<u>}</u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>	}—					\neg
┝─┼												<u> </u>											<u> </u>												-
┝─┤											—		├								$\left - \right $														
┝━─╁			<u> </u>									-									<u> </u>				-										
		1			1	├──		<u> </u>															┣──			-		-							
							<u> </u>																												
					-				<u> </u>												 					<u> </u>				<u> </u>					
																		<u> </u>	<u> </u>							-									
ŀ				\vdash		╞──		<u>† </u>																						╞──					_
						<u> </u>	1													<u> </u>							ŀ							-	
		1	1		1		1			1			\square											<u> </u>						t					
			1		1		1	1																1			<u> </u>	-		<u> </u>					
					\square	[[t	t —			<u>├</u> ─						t		l											
		1		1			1			1		1				<u> </u>		1		1		1				1	1								
						1			1	1	ľ		1			<u> </u>		 		1		1	[<u> </u>					
							ĺ	1			1	Î	1																						
Total	A/PG			41	0	36	0	1	0	4	0	4	0	42	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	161

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NA	SA JPL
-----------------------	--------

Collection Date: July 15, 2013

LDC Report Date: August 21, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14762

Sample Identification

TB-1-7/15/13 SB-1-7/15/13 EB-1-7/15/13 MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 MW-19-5 DUP-1-3Q13 MW-19-4 MW-19-3 MW-19-2 MW-19-1 MW-20-2MS MW-20-2MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 16 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the validation criteria of less than or equal to 30.0% for all compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation

All compound quantitations were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-19-5 and DUP-1-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentra		
Compound	MW-19-5	DUP-1-3Q1	RPD
Chloroform	0.23	0.20	14
Styrene	0.070	0.068U	200
Tetrachloroethene	1.0	0.85	16
Trichloroethene	0.19	0.13	38

XVII. Field Blanks

Sample TB-1-7/15/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-1-7/15/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
EB-1-7/15/13	Toluene	0.17 ug/L

Sample SB-1-7/15/13 was identified as a source blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
SB-1-7/15/13	Toluene	0.13 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

LDC #: 30230A1	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>1314762</u>	Level III/IV
Laboratory: BC Laboratories,	Inc.

Date: Page: (of Reviewer: 31/6 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/15/13
Н.	GC/MS Instrument performance check	A	
111.	Initial calibration	A	2 RSD € 25 2 Γ×
IV.	Continuing calibration/ICV	A	$cw/iw \leq 30$
V.	Blanks	Á	
VI.	Surrogate spikes	Á	
VII.	Matrix spike/Matrix spike duplicates	NA	
VIII.	Laboratory control samples	A	Las
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/RL/LOQ/LODs	Á	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	SW	b = 9, 10
XVII.	Field blanks	SW	$\frac{1}{78} = 1$ $SB = 2$ $EB = 3$

Note:

A = Acceptable N = Not provided/applicable + ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

SW = See worksheet

1	TB-1-7/15/13	11	MW-19-4	21	BWG1026-B1K1	31	
2	SB-1-7/15/13	12	MW-19-3	22		32	
3	EB-1-7/15/13	13	MW-19-2	23		33	
4	MVV-20-5	14	MW-19-1	24		34	
5	MW-20-4**	15	MW-20-2MS	25		35	
6	MW-20-3	16	MW-20-2MSD	26		36	
7	MW-20-2	17		27		37	
8	MW-20-1	18		28		38	
9	MW-19-5	19		29		39	
10	DUP-1-3Q13 DUP-1-3Q13	20		30	·····	40	

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA Method 524.2)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		<u> </u>		
Cooler temperature criteria was met.				
II GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) ≤ 30%?				
V. Blanks				
Was a method blank associated with every sample in this SDG?	\leq			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	-			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes	,			
Were all surrogate %R within QC limits?	\square	$\begin{bmatrix} \\ \\ \end{bmatrix}$		
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates				n de la companya de l
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?			 	···
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?		L'		
Was an LCS analyzed per analytical batch?		'		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the OC limits?				

VALIDATION FINDINGS CHECKLIST

Page:_	<u>2_of_2</u>
Reviewer:	JVG
2nd Reviewer:	A
	V -

Validation Area	Yes	No	NA	Findings/Comments
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within +/-40% from the associated calibration standard?	1			
Were retention times within - 30% of the last continuing calibration or +/- 50% of the initial calibration?	\square			
XI. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	\angle			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				-
Were relative intensities of the major ions within $\pm 20\%$ between the sample and the reference spectra?				
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		/		
XIV. System performance				
System performance was found to be acceptable.	\land			
XV. Overall assessment of data			•	
Overall assessment of data was found to be acceptable.	/			
XVI. Field duplicates				and a second second Second second second Second second
Field duplicate pairs were identified in this SDG.	/			
Target compounds were detected in the field duplicates.				
XVII. Field blanks	,			
Field blanks were identified in this SDG.	/			
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method 524.2)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ТТТТ.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	WW.

· .

LDC#: 30230A1

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of 1_ Reviewer: JVG_ 2nd Reviewer: _____

METHOD: GC MS Volatiles (EPA SW 846 Method 8260B)

Were field duplicate pairs identified in this SDG?

NA Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (ug/L)	
Compound	9	10	RPD
К	0.23	0.20	14
FF	0.070	0.068U	200
AA	1.0	0.85	16
S	0.19	0.13	38

V:\FIELD DUPLICATES\30230A1.wpd

2

LDC #: <u>302 30 Å</u> VALIDATION FINDINGS WORKSHEET **Field Blanks**

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Were field blanks identified in this SDG? Were target compounds detected in the field blanks?

Sample: ____

SB) Field Blank / Trip Blank / Rinsate (circle one)

Linits (M, /L)
2 0,13

Sample: <u>3</u> (EB) Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units (1/9/L)
<i>(</i> (. 0, 1Z

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units ()

LDC #: 30230 A)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>\</u> of <u>}</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>_</u>

METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of Compound

 C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

X = Mean of the RRFs

		Calibration			Reported RRF	Recalculated RRF	Reported Average RRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound (I	S)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	7/15/2013	Benzene	(IS1)	1.92134	1.92134	1.88704	1.88704	11.85	11.85
	MS V5		Tetrachlororethene	(IS2)	0.36073	0.36073	0.35160	0.35160	14.80	14.80
			1,1,2,2-TCA	(IS3)	0.58990	0.58990	0.54691	0.54691	6.84	6.84

LDC# 30230A1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

∖of
JVG
<u> </u>

METHOD: GC/MS VOA (EPA Method 524.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CC)	(CC)		
1	15jul24	07/15/13	Benzene	(IS1)	1.887043	1.808971	1.808971	4.1	4.1
	MS V5		Tetrachlororethene	(IS2)	0.351600	0.328851	0.328851	6.5	6.5
			1,1,2,2-TCA	(IS3)	0.546910	0.534417	0.534417	2.3	2.3

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 30230 Å)

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer: <u>g</u>

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: ± 5

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8	10,0	10,05	100	100	9
Bromofluorobenzene		9.63	96.3	96.3	
1,2-Dichlorobenzene-d4		1051	105	105	
Dibromofluoromethane					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane				· ·	

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

LDC #: 30230 A/

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: 1_of 1 Reviewer: JVG_____ 2nd Reviewer:

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: 15 /16

Compound	Sp Add (୦୦୩ /	ike ded (L)	Sample Concentration (パル	Spiked Sample Concentration (レg /))		Spiked Sample Concentration (レg / <u>)</u>		Spiked Sample Concentration (//g //_)		ample <u>Matrix</u> ration <u>Percent</u>		Matrix Spike Duplicate Percent Recovery		<u>MS/MSD</u>	
	MS_	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc				
1,1-Dichloroethene	25,0	25.0	o	24.06	23.94	96.2	96. r	95,8	95 X	02,6	0,50				
Trichloroethene	[1	0.760	24.16	74.48	93,6	93.6	94.9	94-9	1.32	1.32				
Benzene			0	23.46	22.71	93.8	93.8	90.8	90. X	3.25	3.15				
Toluene				23.70	23.95	95.0	95.0	95,8	95.8	0. 881	0.88				
Chlorobenzene				24.10	23.7	96,4	96.4	94.8	94-8	1.63	1.63				
			4												

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of_1 Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BWG 1026-BS1

	Spike		Spiked Sample			:s		SD			
Compound	Ad (10)	lded /L)	Concent (49)	Concentration		Percent Recovery		Percent Recovery		RPD	
					Reported	Recalc	Reported	Recalc	Reported	Recalculated	
1,1-Dichloroethene	25,00	М	24.640	LA_	98.6	98.6					
Trichloroethene			24.21		96.8	96.8					
Benzene			24.23		96.9	96.9					
Toluene			24.27		97.	97.1	:				
Chlorobenzene		\mathbf{V}	24.40		97.6	97.6					
										·	
				·····	· · · · ·						
	<u> </u>										
										· ···	

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 30 230 A

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS VOA (EPA Method 524.2)

Compound results reported with a positive detect were recalculated and verified using the following equation:

Concentr	ration	$= \frac{(A_{\cdot})(I_{\circ})(DF)}{(A_{i_{\circ}})(RRF)(V_{\circ})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V _o	=	Volume or weight of sample purged in milliliters (ml) or grams (g).
Df	=	Dilution factor.
%S	=	Percent solids, applicable to soils and solid matrices only.

Example:		
Sample I.D. <u>5</u> , <u>MD</u> : LCS <u>Benzene</u>		
Conc. = (148 3326) (10.0) ((324437) (1.887643) ()())
= 24,23 ug /L		

· #	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
	· · · · · · · · · · · · · · · · · · ·				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 15, 2013
LDC Report Date:	August 21, 2013
Matrix:	Water
Parameters:	Chromium
Validation Level:	EPA Level III & IV
Laboratory:	BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14762

Sample Identification

SB-1-7/15/13 EB-1-7/15/13 MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 SB-1-7/15/13MS SB-1-7/15/13MSD SB-1-7/15/13DUP MW-20-2MS MW-20-2MSD MW-20-2DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No Chromium contaminants were found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

Sample EB-1-7/15/13 was identified as an equipment blank. No chromium was found.

Sample SB-1-7/15/13 was identified as a source blank. No chromium was found.

NASA JPL Chromium - Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

Technical holding times		Sampling dates:		
ICP/MS Tune	A			
Calibration	A			
Blanks	A			
ICP Interference Check Sample (ICS) Analysis	N	Notrequire	6	

Not reviewed for Level III validation.

arce RIL=

LDC #: 30230A4 SDG #: 1314762 Laboratory: BC Laboratories, Inc. Chromium METHOD: Metals (EPA Method 200.7/200.8)

Technical holding times

Matrix Spike Analysis

ICP Serial Dilution

Field Duplicates

Field Blanks

Duplicate Sample Analysis

Internal Standard (ICP-MS)

Sample Result Verification

Overall Assessment of Data

Furnace Atomic Absorption QC

Laboratory Control Samples (LCS)

1. 11.

III.

IV.

V.

VI.

VII.

VIII

IX.

Х.

XI.

XII.

XIII.

XIV.

XV

Validation Area

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Λ

Δ

λ

Α

Α

1m

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

R= d

C

Not reviewed for level 11

Validated Samples:** Indicates sample underwent Level IV validation

	<u> </u>					
1	SB-1-7/15/13	11	MW-20-2MS	21	31	
2	EB-1-7/15/13	12	MW-20-2MSD	22	32	
3	MW-20-5	13	MW-20-2DUP	23	33	
4	MW-20-4**	14		24	34	
5	MW-20-3	15		25	35	
6	MW-20-2	16		26	36	
7	MW-20-1	17		27	37	
8	SB-1-7/15/13MS	18		28	38	
9	SB-1-7/15/13MSD	19	· · · · · · · · · · · · · · · · · · ·	29	39	
10	SB-1-7/15/13DUP	20		30	40	

Notes:_

VALIDATION COMPLETENESS WORKSHEET

Level III/IV

LDC #:____

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/	-		
Cooler temperature criteria was met.				
II. ICP/MS Tune	<u> </u>	_		
Were all isotopes in the tuning solution mass resolution within 0.1 amu?				
Were %RSD of isotopes in the tuning solution ≤5%?				
III. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?				
Were all initial calibration correlation coefficients <a> 0.995?	1			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	\backslash			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?			_	
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				-
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	<			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	~			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	$\left(\right)$			
Was an LCS analyzed per extraction batch?	$\left(\right)$			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	[

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments						
VIII. Furnace Atomic Absorption QC										
If MSA was performed, was the correlation coefficients > 0.995?			~							
Do all applicable analysies have duplicate injections? (Level IV only)		_	_							
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/	n						
Were analytical spike recoveries within the 85-115% QC limits?				ſ						
IX. ICP Serial Dilution										
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		<		· · · · · · · · · · · · · · · · · · ·						
Were all percent differences (%Ds) < 10%?										
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			/	ſ						
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)										
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?										
If the %Rs were outside the criteria, was a reanalysis performed?			/							
XI. Regional Quality Assurance and Quality Control										
Were performance evaluation (PE) samples performed?			-							
Were the performance evaluation (PE) samples within the acceptance limits?			/							
XII. Sample Result Verification										
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/									
XIII. Overall assessment of data										
Overall assessment of data was found to be acceptable.	/									
XIV. Field duplicates										
Field duplicate pairs were identified in this SDG.										
Target analytes were detected in the field duplicates.			/							
XV. Field blanks										
Field blanks were identified in this SDG.	1									
Target analytes were detected in the field blanks.		1								

LDC #: 3020

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found_x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV solution

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
IQ	ICP/MS (Initial calibration)	\mathcal{C}	50.736	50	101	(())	7
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
CONZ	ICP/MS (Continuing calibration)	ζ	356.712	40	96.8	96,8	4
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: <u>Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>
LDC #:____

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = [S-D]x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = <u>|I-SDR|</u> x 100

Where, I = Initial Sample Result (mg/L)SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

				·	Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)
\mathcal{N}	ICP interference check						
LCS	Laboratory control sample	C(41.707	40	104	104	Y
8	Matrix spike	·	(SSR-SR) 40,610	40	102	102	
13	Duplicate	Cr	NÚ	0,562	NC	NC	J
	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 30230A4

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:of
Reviewer: <u>CR</u>
2nd reviewer:
Ý

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please Y N Y N Y N	e see qua <u>N/A</u>	alifications below for all questions answered "N". Not applicable questions are identified as "N/A". Have results been reported and calculated correctly? Are results within the calibrated range of the instruments and within the linear range of the ICP? Are all detection limits below the CRDL?						
Detected analyte results forequation:			were recalculated and verified using the follo					
Concen	tration =	<u>(RD)(FV)(Dil)</u> (In. Vol.)		Recalculation:	ata:	. /1		
RD FV In. Vol. Dil	2 2 2 2	Raw data conce Final volume (m Initial volume (m Dilution factor	ntration)) or weight (G)	×(U)	0,88	ywg1 -		
#	S	ample ID		Analyte	Reported Concentration (MQ L)	Calculated Concentration	Acceptable (Y/N)	
		4		G	0,88	0,88	Ĭ	
				·				
			<u></u>	<u></u>		·		
				· <u>,</u>				
				· · · · · · · · · · · · · · · · · · ·				
]								
						<u> </u>		
	, 							
	 					<u> </u>		

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Collection Date: July 15, 2013

LDC Report Date: August 21, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14762

Sample Identification

SB-1-7/15/13 EB-1-7/15/13 MW-20-5 MW-20-4** MW-20-3 MW-20-2 MW-20-1 MW-19-5 DUP-1-3Q13 MW-19-4 MW-19-3 MW-19-2 MW-19-1 **MW-20-2MS** MW-20-2MSD MW-20-2DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 16 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-19-5 and DUP-1-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-19-5	DUP-1-3Q13	RPD
Perchlorate	3.1	3.0	3

XI. Field Blanks

Sample EB-1-7/15/13 was identified as an equipment blank. No contaminant concentrations were found.

Sample SB-1-7/15/13 was identified as a source blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 1314762

No Sample Data Qualified in this SDG

LDC #:	30230A6	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	1314762	Level III/IV
Laborato	ory: BC Laborate	pries, Inc.

Date: 216/13
Page: <u></u> of <u></u>
Reviewer:
2nd Reviewer:

METHOD: Perchlorate (EPA Method 314.0), Hexavalent Chromium (EPA SW846 Method 7196)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 7 (5/13)
II	Initial calibration	A	
111.	Calibration verification	A	
١٧	Blanks	A	
V	Matrix Spike/Matrix Spike Duplicates	A	msp
VI.	Duplicates	À	QÓ
VII.	Laboratory control samples	A	Les
VIII.	Sample result verification	A	Not reviewed for Level III validation.
IX.	Overall assessment of data	A	
Х.	Field duplicates	ADa	(8,9)
L_xi_	Field blanks	MQ	SB=1 EB=2

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	SB-1-7/15/13	11	MW-19-3	21	31
2	EB-1-7/15/13	12	MW-19-2	22	32
3	MW-20-5	13	MW-19-1	23	33
4	MW-20-4**	14	MW-20-2MS	24	34
5	MW-20-3	15	MW-20-2MSD	25	35
6	MW-20-2	16	MW-20-2DUP	26	36
7	MW-20-1	17		27	37
8	MW-19-5	18		28	38
9	DUP-1-3Q13	19		29	39
10	MW-19-4	20		30	40

Notes:

Method: Inorganics (EPA Method Second)					
Validation Area	Yes	No	NA	Findings/Comments	
I. Technical holding times					
All technical holding times were met.	-				
Cooler temperature criteria was met.	/	- 			
II. Calibration					
Were all instruments calibrated daily, each set-up time?					
Were the proper number of standards used?	\square				
Were all initial calibration correlation coefficients \geq 0.995?	\square	, 			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?					
Were titrant checks performed as required? (Level IV only)					
Were balance checks performed as required? (Level IV only)				[]	
III. Blanks	·····			······	
Was a method blank associated with every sample in this SDG?					
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		<			
IV. Matrix spike/Matrix spike duplicates and Duplicates	····				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/				
V. Laboratory control samples					
Was an LCS anaylzed for this SDG?					
Was an LCS analyzed per extraction batch?					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?					
VI. Regional Quality Assurance and Quality Control					
Were performance evaluation (PE) samples performed?		\square			
Were the performance evaluation (PE) samples within the acceptance limits?			\square		

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments	
VII. Sample Result Verification					
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/				
Were detection limits < RL?					
VIII. Overall assessment of data					
Overall assessment of data was found to be acceptable.					
IX. Field duplicates					
Field duplicate pairs were identified in this SDG.		-			
Target analytes were detected in the field duplicates.					
X. Field blanks					
Field blanks were identified in this SDG.	<		-		
Target analytes were detected in the field blanks.					

S

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

amnie ID	Parameter
-10	
-1	ph TDS CLE NO NO SO O PO AIK CN NH TKN TOC CRETCIO
	ph TDS CLE NO NO SO O PO Alk CN NH TKN TOC Cret ClO
111	$p_{1} + TDS - CI = NO - NO - SO - OPO - Alk CN NH TKN TOC CIO: CIO4$
15	ph TDS CLE NO NO SO O PO AIK CN NH TKN TOCKIG $+$ CIO
16	$\frac{1}{2}$
- Ve	$\frac{1}{2}$
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$\frac{1}{100} \text{ CLF NO}_3 \text{ NO}_2 \text{ SO}_4 \text{ O-PO}_4 \text{ Aik CN NH}_3 \text{ IKN TOC CIG+ CIO}_4$
	$\frac{1}{100} \text{ CL} = \frac{1}{100} \text{ NO}_2 \text{ SO}_4 \text{ O}_2 \text{ PO}_4 \text{ Aik CN NH}_3 \text{ TKN TOC CIG+ ClO}_4$
	$\frac{\text{ph} \text{ TDS CLF NO_3 NO_2 SO_4 O-PO_4 AIK CN NH_3 TKN TOC Cr6+ ClO_4}{\text{ph} \text{ TDS CLF NO_3 NO_2 SO_4 O-PO_4 AIK CN NH_3 TKN TOC Cr6+ ClO_4}}$
	$\frac{\text{ph TDS CIF NO_3 NO_2 SO_4 O-PO_4 AIK CN NH_3 TKN TOC Cro+ ClO_4}{\text{ph TDS CIF NO_3 NO_2 SO_4 O-PO_4 AIK CN NH_3 TKN TOC Cro+ ClO_4}$
	$\frac{1}{100} \text{ Cl} F = \frac{1}{100} \text{ NO}_2 \text{ SO}_4 \text{ O}_2 \text{ PO}_4 \text{ Aik CN NH}_3 \text{ IKN TOC Cr6+ ClO}_4$
	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Aik CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH_TDS_CL_F_NONOSO, O-PO,_AIK_CN_NH_TKN_TOC_Cr6+ CIO,

Comments:_

Page:	<u>1_of_1_</u>
Revièwer:	CR
2nd reviewer	: N

LDC#<u>30230A6</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	of
Reviewer:	_ <u>A</u>
2nd Reviewer:	<u> </u>

Inorganics: Method See Cover

	Concentra		
Analyte	8	9	RPD
Perchlorate	3.1	3.0	3

\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30230A6.wpd

LDC #: 30230A6

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

(Page:____ of __ Reviewer: 9 2nd Reviewer: ____

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of $\frac{204}{3}$ was recalculated. Calibration date: $\frac{7/11/13}{3}$

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

						Recalculated	Reported	Acceptable
Type of analysis	Ana	lyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration			s1	0.0	0			
			s2	2	0.0023	0.998922	0.998803	
			s3	4	0.0044			L L
	0	λ_1	s4	6	0.0061			(
		(s5	10	0.0099			1
			s6	20	0.0207			
Calibration verification			CCV	10	11,2232	112	112	
Calibration verification	1	_	J	lO	10.2327	102	102	
Calibration verification	CC	yt-		0,05	0.052861	106	102	\mathbf{A}

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

1

Page: f
1 age01
Reviewer: <u> </u>
2nd Reviewer:

METHOD: Inorganics, Method Stecaver

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where,
 Found =
 concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated	Reported	Acceptable (Y/N)
LCS	Laboratory control sample	Clar	10.699	10	101	$\left(\bigcirc \right)$	
14	Matrix spike sample	C(6T	(ssr-sr) () . () \$67 \$6	0.0S	108	10 g	
16	Duplicate sample	901	1,9472	2.1912	11.8	11,8	¥

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 3013044

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of_(
Reviewer:	Q2_
2nd reviewer:	Ac
	1

_____reported with a positive detect were

METHOD: Inorganics, Method ______

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Ϋ́́ N N/A

Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

Compound (analyte) results for

recalculated and verified using the following equation:

Concentration =

N N/A

Y N N/A

Y

Recalculation:

Non Detect

#	Sample ID	Analyte	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
			///		
		· · · · · · · · · · · · · · · · · · ·			
		·		·	

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site N	lame:	NASA JPL
Project/Site N	lame:	NASA JPL

Collection	Date:	Julv 16.	2013
Oblicetion	Date.	oury ro,	2010

LDC Report Date: August 19, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14878

Sample Identification

TB-2-7/16/13 EB-2-7/16/13 MW-14-5 MW-14-4 MW-14-3 MW-14-2 DUPE-2-3Q13 MW-14-1 MW-24-3 MW-24-3 MW-24-2 MW-24-1 MW-24-3MS MW-24-3MSD

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the validation criteria of less than or equal to 30.0% for all compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-14-2 and DUPE-2-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentr		
Compound	MW-14-2	DUPE-2-3Q13	RPD
Chloroform	0.56	0.63	12
1,1-Dichloroethane	0.15	0.20	29
cis-1,2-Dichloroethene	0.23	0.33	36

	Concentr	· · · · · · · · · · · · · · · · · · ·	
Compound	MW-14-2	DUPE-2-3Q13	RPD
trans-1,2-Dichloroethene	0.25	0.27	8
Tetrachloroethene	0.49	0.49	0
Trichloroethene	5.4	6.1	12

XVII. Field Blanks

Sample TB-2-7/16/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-2-7/16/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
EB-2-7/16/13	Toluene	0.16 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 13-14878

No Sample Data Qualified in this SDG

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-14878

No Sample Data Qualified in this SDG

LDC #: 30230B1	VALIDATION COMPLETENESS WORKSHEET	Date
SDG #: <u>13-14878</u>	_ Level III	Page:
Laboratory: BC Laboratories,	Inc	Reviewer

Date: <u>8/9/1</u>3 Page: <u>1</u>of <u>/</u> Reviewer: <u>V</u> 2nd Reviewer: <u></u>

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 7/16/13
11.	GC/MS Instrument performance check	Á	
Ш.	Initial calibration	A	20 RSD € 20 2 r2
IV.	Continuing calibration/ICV	A	CON/100 6302
V.	Blanks	À	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	мА	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/RL/LOQ/LODs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Å	
XVI.	Field duplicates	SW	b = 6, 7
XVII.	Field blanks	SW	\neq TB = 1 tB = 2

Note: A

A = Acceptable N = Not provided/applicable SW = See worksheet ℋND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

	'	- WA	ter					
1	TB-2-7/16/13		11	MW-24-1	21	BWG1110- BIKI	31	
12	EB-2-7/16/13	-	12	MW-24-3MS	22		32	
3	MW-14-5		13	MW-24-3MSD	23		33	
4	MW-14-4		14		24		34	
5	MVV-14-3		15		25		35	
6	MW-14-2	p	16		26		36	
7	DUPE-2-3Q13	p	17		27		37	
8	MVV-14-1	·	18		28		38	
9	MVV-24-3		19		29		39	
10	MVV-24-2		20		30		40	

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. lodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chiorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

LDC#: 30230B1

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GC MS Volatiles (EPA SW 846 Method 8260B)

Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs?

	Concentra	tion (ug/L)	
Compound	6	7	RPD
к	0.56	0.63	12
1	0.15	0.20	29
QQQ	0.23	0.33	36
РРР	0.25	0.27	8
AA	0.49	0.49	0
S	5.4	6.1	12

V:\FIELD DUPLICATES\30230B1.wpd

VALIDATION FINDINGS WORKSHEET **Field Blanks**

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Y N N/A <u>Y N N/A</u>

Sample: ____

Were field blanks identified in this SDG? Were target compounds detected in the field blanks?

2 (F) Field Blank / Trip Blank / Rinsate (circle one)

Compound		Concentration
	CC	0,16
	·····	

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units (
	·

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPL

Collection	Date:	July 16	2013
Conection	Date.	July 10,	2013

LDC Report Date: August 16, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14878

Sample Identification

EB-2-7/16/13 MW-14-3 MW-14-2 DUPE-2-3Q13 MW-14-1 MW-24-4 MW-24-3 MW-24-3 MW-24-2 MW-24-1 MW-24-3MS MW-24-3MSD MW-24-3DUP

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MW-14-2 and DUPE-2-3Q13 were identified as field duplicates. No Chromium was detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	MW-14-2	DUPE-2-3Q13	RPD
Chromium	1.3	1.3	0

XV. Field Blanks

Sample EB-2-7/16/13 was identified as an equipment blank. No chromium was found with the following exceptions:

Blank ID	Analyte	Concentration
EB-2-7/16/13	Chromium	0.77 ug/L

NASA JPL Chromium - Data Qualification Summary - SDG 13-14878

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG 13-14878

No Sample Data Qualified in this SDG

Level III

Date: Page: Reviewer: 2nd Reviewer:

Chromin METHOD: Metals (EPA Method 200.7/200.8)

Laboratory: BC Laboratories, Inc.

LDC #: 30230B4

SDG #: 13-14878

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 7/16/15
11.	ICP/MS Tune	A	
	Calibration	A	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	\overline{N}	Not required
VI.	Matrix Spike Analysis	A	mslp
VII.	Duplicate Sample Analysis	A	P-p
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	$\square N$	Notericula
Χ.	Furnace Atomic Absorption QC	$\mathcal{N}_{\mathcal{C}}$	
XI.	ICP Serial Dilution	N	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	P	
XIV.	Field Duplicates	SW,	(3,4)
xv	Field Blanks	SW	EB=/

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Valida	ated Samples: ω°	Rr.				
1	EB-2-7/16/13	11	MW-24-3MSD	21	31	
2	MW-14-3	12	MW-24-3DUP	22	32	
3	MW-14-2	13		23	33	
4	DUPE-2-3Q13	14		24	34	
5	MW-14-1	15		25	35	
6	MW-24-4	16		26	36	
7	MW-24-3	17		27	37	
8	MW-24-2	18		28	38	
9	MW-24-1	19		29	39	
10	MW-24-3MS	20		30	40	

Notes:

LDC#: 30230B4

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:____of____ Reviewer:_____ 2nd Reviewer:_____

METHOD: Metals (EPA Method 6010B/7000)

	Concentration (ug/L)		
Analyte	3	4	
Chromium	1.3	1.3	0

\\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30230B4.wpd

LDC #:	303034
	1007-0

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:	ા of_	}
Reviewer:	Q	
2nd reviewer:		

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

YN N/A	Were field blanks identified in this SDG?
YN N/A	Were target analytes detected in the field blanks?

Sample: ______ Field Blank / Trip Blank / Rinsate / Other (ER) (circle one)

Analyte	Concentration Units (
Ç	0.77101L
	<u> </u>
	· · · ·

Sample: _____ Field Blank / Trip Blank / Rinsate / Other_____ (circle one)

Analyte	Concentration Units (

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection	Date:	July 1	16, 2013

LDC Report Date: August 21, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14878

Sample Identification

EB-2-7/16/13 MW-14-5 MW-14-4 MW-14-3 MW-14-2 DUPE-2-3Q13 MW-14-1 MW-24-4 MW-24-3 MW-24-2 MW-24-1 MW-24-3MS MW-24-3MSD MW-24-3DUP MW-24-1MS MW-24-1MSD MW-24-1DUP

Introduction

This data review covers 17 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Sulfate, and Nitrate as Nitrogen, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrite as Nitrogen, EPA SW 846 Method 7196 for Hexavalent Chromium, and EPA Method 365.1 for Orthophosphate as Phosphorus.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

Raw data were not reviewed for this SDG.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-14-2 and DUPE-2-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:
	Concentration (mg/L)			
Analyte	MW-14-2	DUPE-2-3Q13	RPD	
Perchlorate	1.9	3.2	51	

XI. Field Blanks

Sample EB-2-7/16/13 was identified as an equipment blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 1314878

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 1314878

No Sample Data Qualified in this SDG

LDC #:	30230B6	VALIDATION COMPLETENESS WORKSHEET				
SDG #:	1314878	Level III				
Laboratory: BC Laboratories, Inc.						

Date: 816/13
Page: <u>`_</u> of)
Reviewer:
2nd Reviewer: A
1

METHOD: <u>Chloride, Sulfate, Nitrate-N (EPA Method 300.0)</u>, Perchlorate (EPA Method 314.0), Nitrite-N (EPA Method 353.2), Hexavalent Chromium (EPA SW846 Method 7196), Orthophosphate-P (EPA Method 365.1)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	\square	Sampling dates: 7/16/13
11	Initial calibration	A	
111.	Calibration verification	A	
<u>IV</u>	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	mslo
<u>VI.</u>	Duplicates	A	0.0
VII.	Laboratory control samples	A	LES
<u></u>	Sample result verification	N	
IX.	Overall assessment of data	A	
<u>X</u> .	Field duplicates	SW	(5,6)
	Field blanks	LND	63-1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

vanae	Water					
1	EB-2-7/16/13	11	MW-24-1	21	31	
2	MW-14-5	12	MW-24-3MS	22	32	
3	MW-14-4	13	MW-24-3MSD	23	33	
4	MW-14-3	14	MW-24-3DUP	24	34	
5	MW-14-2	15	MW-24-1MS	25	35	
6	DUPE-2-3Q13	16	MW-24-1MSD	26	36	
7	MW-14-1	17	MW-24-1DUP	27	37	
8	MW-24-4	18		28	38	
9	MW-24-3	19		29	39	
10	MW-24-2	20		30	40	

Notes:_

c#:_______________

T

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

circled methods are applicable to each sample.

Page:	<u>1_of_1</u>	
Reviewer:	CR	
2nd reviewer	: v-	

٦

ample ID	Parameter
11	pH TDS (CI) F (NO3 (NO4) SO O-PO) AIK CN NH3 TKN TOC Cr6+ CIO4
1-11	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Aik CN NH ₃ TKN TOO O O O O O O O O O
19-11	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+) CIO4
DC:12-14	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $(Cr6+CIO_4)$
15-17	pH TDS CI F NO ₃ (NO_2) SO ₄ $(-PO_4)$ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ '
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_Q-POAIK_CN_NH_TKN_TOC_Ct6+ ClQ

iments:_

LDC#<u>30230B6</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Inorganics: Method See Cover

	Concentration (mg/L)		
Analyte	5	6	RPD
Perchlorate	1.9	3.2	51

\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30230B6.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Collection Date: July 17, 2013

LDC Report Date: August 19, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14991

Sample Identification

TB-3-7/17/13 EB-3-7/17/13 MW-17-4 MW-17-3 MW-17-2 MW-18-5 MW-18-5 MW-18-4 DUPE-3-3Q13 MW-18-3 MW-18-2 MW-18-2MS MW-18-2MSD

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/18/13	Pentachloroethane	35.9	All samples in SDG 13-14991	J (all detects) UJ (all non-detects)	Р

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

V:\LOGIN\BATTELLE\JPL\30230C1_BA3.DOC

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-18-4 and DUPE-3-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Compound	MW-18-4	DUPE-3-3Q13	RPD
Carbon tetrachloride	2.1	1.5	33

	Concentr		
Compound	MW-18-4	DUPE-3-3Q13	RPD
Chloroform	0.69	0.57	19
Tetrachloroethene	0.95	0.68	33
Trichloroethene	0.92	0.64	36

XVII. Field Blanks

Sample TB-3-7/17/13 was identified as a trip blank. No volatile contaminants were found.

Sample was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
EB-3-7/17/13	Toluene	0.14 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 13-14991

SDG	Sample	Compound	Flag	A or P	Reason
13-14991	TB-3-7/17/13 EB-3-7/17/13 MW-17-4 MW-17-3 MW-17-2 MW-18-5 MW-18-5 MW-18-4 DUPE-3-3Q13 MW-18-3 MW-18-2	Pentachloroethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-14991

No Sample Data Qualified in this SDG

LDC #: 30230C1	VALIDATION COMPLETENESS WORKSHEET
SDG #:13-14991	Level III
Laboratory: BC Laboratories,	Inc

Date: 8/19/13
Page: <u> </u> of/
Reviewer: JVG
2nd Reviewer:
<i>پ</i> ر ۲

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	À	Sampling dates: 7/17/12
<u> </u>	GC/MS Instrument performance check	A	
	Initial calibration	A	2 RSD = 202 r~
IV.	Continuing calibration/ICV	Sint	Calla 430 3
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A M	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	<u></u> N	
X .	Internal standards	A	
XI.	Target compound identification	<u>N</u>	
XII.	Compound quantitation/RL/LOQ/LODs	<u>N</u>	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	SW	b = 7, 8
XVII.	Field blanks	SW	$\#_{TB} = 1$ EB = 2

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ℋND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

		WAte	e r		·			
1	TB-3-7/17/13		11	MW-18-2MS	21	BNIG 1226-B1K1	31	
+ 2	EB-3-7/17/13		12	MW-18-2MSD	22	· · · · · · · · · · · · · · · · · · ·	32	
3	MW-17-4		13		23		33	
4	MW-17-3		14	·	24		34	
5	MW-17-2		15		25		35	
6	MW-18-5		16		26		36	
7	MVV-18-4	D	17		27		37	
8	DUPE-3-3Q13	Ď	18		28		38	
9	MW-18-3		19		29		39	
10	MW-18-2		20		30		40	

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. Iodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP. Pentachloroethane
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ТТТТ.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	ww.

LDC #: 30230 C)

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS VOA (EPA Method 524.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (2 + N/A) Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? (2 + N/A) Were all percent differences (%D) \leq 30% ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	7/18/13	18 Jul 03	рррр	35,9	AII	J/UJ/P
				,		
<u> </u>						
L			l			

LDC#: 30230C1

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC MS Volatiles (EPA SW 846 Method 8260B)

Were field duplicate pairs identified in this SDG?

A Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (ug/L)		
Compound	7 8		KPD	
0	2.1	1.5	33	
к	0.69	0.57	19	
АА	0.95	0.68	33	
S	0.92	0.64	36	

V:\FIELD DUPLICATES\30230C1.wpd

LDC #: 30 230 C/ VALIDATION FINDINGS WORKSHEET **Field Blanks**

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Were field blanks identified in this SDG? Were target compounds detected in the field blanks?

Sample: 2

「Eち」 Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units (VG /L)
CC CC	0,14

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units ()

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units ()
·	

LDC Report# 30230C4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPL

Collection	Date:	July 17	2013
Conection	Dale.	July 17,	2013

LDC Report Date: August 16, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14991

Sample Identification

EB-3-7/17/13 MW-17-4 MW-17-3 MW-17-2 MW-18-4 DUPE-3-3Q13 MW-18-3 MW-18-3 MW-18-2 MW-18-2MS MW-18-2MSD MW-18-2DUP

V:\LOGIN\BATTELLE\JPL\30230C4_BA3.DOC

Introduction

This data review covers 11 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MW-18-4 and DUPE-3-3Q13 were identified as field duplicates. No Chromium was detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	MW-18-4	DUPE-3-3Q13	RPD
Chromium	2.5	2.1	17

XV. Field Blanks

Sample EB-3-7/17/13 was identified as an equipment blank. No chromium was found with the following exceptions:

Blank ID	Analyte	Concentration
EB-3-7/17/13	Chromium	0.71 ug/L

NASA JPL Chromium - Data Qualification Summary - SDG 13-14991

.

No Sample Data Qualified in this SDG

NASA JPL

Chromium - Laboratory Blank Data Qualification Summary - SDG 13-14991

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET
------------	--------------	----------------	-----------

Level III

Date: 8/6/13 Page: of) Reviewer: 2nd Reviewer:

SDG #: <u>13-14991</u> Laboratory: <u>BC Laboratories, Inc.</u> Chronium METHOD: Metals (EPA Method 200:7/200.8)

30230C4

LDC #:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		, Comments
Ι.	Technical holding times	A	Sampling dates: 7/7/13
Ш.	ICP/MS Tune	A	
.	Calibration	Ð	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	\square	Notrequired
VI.	Matrix Spike Analysis	L A	mslo
VII.	Duplicate Sample Analysis	A	20
VIII.	Laboratory Control Samples (LCS)	A	1.05
IX.	Internal Standard (ICP-MS)	$\lfloor N \rfloor$	Not revieweb
<u>X.</u>	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	N_{\sim}	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	SN	(5,6)
xv	Field Blanks	SW	EB=1

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

	1	r				
1	EB-3-7/17/13	11	MW-18-2DUP	21	 31	
2	MW-17-4	12		22	 32	
3	MW-17-3	13		23	33	
4	MW-17-2	14		24	34	
5	MW-18-4	15		25	35	
6	DUPE-3-3Q13	16		26	36	
7	MW-18-3	17		27	37	
8	MW-18-2	18		28	38	
9	MW-18-2MS	19		29	39	
10	MW-18-2MSD	20		30	 40	

Notes:_

LDC#:<u>30230C4</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

	1	
Page:_	o	f
Reviewer:	(x_
2nd Reviewer:	(

METHOD: Metals (EPA Method 6010B/7000)

	Concentra		
Analyte	5	6	RPD
Chromium	2.5	2.1	17

\\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30230C4.wpd

METHOD: Tr	ace Metals (EP	A SW 846 Method 6010/6020/7000)		Y
<u>Y N N/A</u> X N N/A	Were field b Were target	lanks identified in this SDG? analytes detected in the field blanks?		
Sample:	\	Field Blank / Trip Blank / Rinsate	/ Other <u>EB</u> (circle	e one)
		Analyte		Concentration
		MICIPLE	C ₍	0.71 vg/L
Sample:		Field Blank / Trip Blank / Rinsate	/ Other (cire	cle one)
	······································	<u>Analyte</u>		Concentration Units ()
<u> </u>				
·····				
<u></u>				

VALIDATION FINDINGS WORKSHEET Field Blanks

LDC #:____

Page:_	of
Reviewer:	9
2nd reviewer:	-b

_

FLDBLK2.4SW

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 17, 2013

LDC Report Date: August 21, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-14991

Sample Identification

EB-3-7/17/13 MW-17-4 MW-17-3 MW-17-2 MW-18-5 MW-18-5 MW-18-4 DUPE-3-3Q13 MW-18-3 MW-18-3 MW-18-2 MW-17-3MSD MW-17-3MSD MW-17-3DUP MW-18-2MS MW-18-2MSD MW-18-2DUP

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

Raw data were not reviewed for this SDG.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-18-4 and DUPE-3-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	MW-18-4	DUPE-3-3Q13	RPD
Perchlorate	13	13	0

XI. Field Blanks

Sample EB-3-7/17/13 was identified as an equipment blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 1314991

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 1314991

No Sample Data Qualified in this SDG

LDC #:	30230C6	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	1314991	Level III
Laborato	ory: BC Laborato	ries, Inc.

	dula
	Date: $\underline{A(a^{\dagger})}$
	Page: <u>`of \</u>
	Reviewer: <u>0</u>
2nd	Reviewer:
	_y <

METHOD: Perchlorate (EPA Method 314.0), Hexavalent Chromium (EPA SW846 Method 7196)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 7/17/13
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	msto
VI.	Duplicates	A	0-2
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	N	
IX.	Overall assessment of data	R	
Х.	Field duplicates	AFA	(6,1)
XI	Field blanks	NO	EB=1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

wall

1	EB-3-7/17/13	11	MW-17-3MSD	21	31
2	MW-17-4	12	MW-17-3DUP	22	32
3	MW-17-3	13	MW-18-2MS	23	33
4	MW-17-2	14	MW-18-2MSD	24	34
5	MVV-18-5	15	MW-18-2DUP	25	35
6	MVV-18-4	16		26	36
7	DUPE-3-3Q13	17		27	37
8	MW-18-3	18		28	38
9	MW-18-2	19		29	39
10	MW-17-3MS	20		30	40

Notes:

<u>x0730C6</u>)C #:_^_

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

circled methods are applicable to each sample.

Page:	<u>_1_of_1_</u>
Reviewer:	CR
2nd reviewe	er:
	1

ample ID	Parameter
1-0	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ (ClO_4)
1-4/09	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOQ $Cr6$ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
\$1.10-12	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ (ClO_4)
1315	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $(Cr6)$ ClO ₄
<u></u>	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
·	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
·	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH TDS CLF NO. NO. SO, O-PO, AIK CN NH. TKN TOC Cr6+ CIO,

iments:

LDC#<u>30230C6</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:of	~
2nd Reviewer:	

Inorganics: Method_See Cover_

	Concentra		
Analyte	6	7	RPD
Perchlorate	13	13	0

\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30230C6.wpd

August 30, 2013

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 16, 2013. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 30249:

<u>SDG #</u>	Fraction
13-15120 13-15237	Volatiles, Chromium, Wet Chemistry

The data validation was performed under EPA Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Rei Gen

Pei Geng Project Manager/Senior Chemist

	НС												At	tach	men	it 1																			
	90/10 (client sele	ect)		č. Krist				LDO	C #3	302	49 ((Ba	ttel	le-S	San	Die	ego)/N	IAS	SA J	IPL)													
LDC	SDG#	DATE REC'D	(3) DATE DUE	V(DA 4.2)	C (20	r 0.8)	CL (31-	.O₄ 4.0)	Cr((71	VI) 96)																								-
Matrix	: Water/Soil			w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s
A	13-15120	08/16/13	09/09/13	14	0	14	0	14	0	14	0												L							 			⊢		
A	13-15120	08/16/13	09/09/13		20.2		0	M 3.	20)		0																			L			\square		
в	13-15237	08/16/13	09/09/13	8	0	11	0	11	0	11	0							ļ			ļ		L_		ļ										
в	13-15237	08/16/13	09/09/13	<i>2</i> .	0	2.	s0).	2.	0	25	40 ⁴⁸																								
																				-															1
	<u></u>							:															_												
																																		\square	
																							[
																														Ι					
	<u></u>																																		
	- <u></u>																																\square		
	<u></u> ·																				1									1			\square	\square	
												1																					\square		
			<u> </u>											İ																				\square	
			<u> </u>	1						İ		1		1															ĺ						
								<u>† </u>		1		1	1									1	1-				1	1	_		,				
										1		1				<u> </u>						1	†—												-
				1				<u> </u>		1		İ								<u>†</u>		1													
	·		1	\square		1	1	1		İ		1	ĺ	 		<u> </u>	1	1		1	1	İ	<u> </u>												
	<u> </u>		1	1			1	1	 	1		<u>†</u>	†			<u> </u>				1		ſ	†												
			<u> </u>	1	1		1			1	<u> </u>	<u>†</u>	1								<u>}</u>	\square	├──							<u>}</u>					
							t		<u> </u>	1		1			\square	<u> </u>				1	†	1								<u> </u>	İ			\square	
	- n		1	1	1	<u> </u>	\mathbf{T}	1	<u> </u>					1		 	<u>† </u>				1									t —					
Total	A/PG		1	25	0	28	0	28	0	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109
			<u> </u>	<u>.</u>			<u></u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	1		<u> </u>	<u> </u>	<u> </u>	·	<u></u>		<u>. </u>		<u> </u>	<u> </u>	•	-			

Laboratory Data Consultants, Inc. Data Validation Report

August 29, 2013

Project/Site	Name:	NASA JPL

Collection Date: July 18, 2013

LDC Report Date:

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15120

Sample Identification

TB-4-7/18/13 EB-4-7/18/13 MW-22-3** MW-22-2 MW-22-1 MW-26-2 MW-26-2 MW-25-5 MW-25-5 MW-25-4 MW-25-3 DUPE-4-3Q13 MW-25-2 MW-25-1 MW-25-4MS MW-25-4MS

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.
I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/22/13 (1309468-CCV2)	Pentachloroethane	33.0	TB-4-7/18/13 EB-4-7/18/13 MW-22-3** MW-22-2 MW-22-1 MW-26-2 MW-26-1 MW-25-5 MW-25-4 MW-25-4 MW-25-3 MW-25-4MS MW-25-4MSD BWG1454-Blk1	J (all detects) UJ (all non-detects)	Ρ
7/22/13 (1309468-CCV3)	Bromomethane Naphthalene	45.0 33.0	DUPE-4-3Q13 MW-25-2 MW-25-1	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р

Date	Compound	%D	Associated Samples	Flag	A or P
7/22/13 (1309468-CCV4)	Pentachloroethane	58.0	DUPE-4-3Q13 MW-25-2 MW-25-1	J (all detects) UJ (all non-detects)	P

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation

All compound quantitations were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-25-3 and DUPE-4-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentr		
Compound	MW-25-3	DUPE-4-3Q13	RPD
Chloroform	0.58	0.48	19
Tetrachloroethene	0.21	0.16	27

XVII. Field Blanks

Sample TB-4-7/18/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-4-7/18/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
EB-4-7/18/13	Toluene	0.11 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 13-15120

SDG	Sample	Compound	Flag	A or P	Reason
13-15120	TB-4-7/18/13 EB-4-7/18/13 MW-22-3** MW-22-2 MW-22-1 MW-26-1 MW-26-1 MW-25-5 MW-25-4 MW-25-3	Pentachloroethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)
13-15120	DUPE-4-3Q13 MW-25-2 MW-25-1	Bromomethane Naphthalene Pentachloroethane	J (all detects) UJ (all non-detects)	P	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15120

No Sample Data Qualified in this SDG

LDC #:_	30	249A	1	VALIDATION
SDG #:_	13	15120)	_
Laborat	ory:	BC L	aboratories	, Inc.

LIDATION COMPLETENESS WORKSHEET

Level III/IV

Date: <u>8/23/13</u> Page: <u>1</u>of / Reviewer: <u>17</u> 2nd Reviewer: <u>7</u>

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/18/13
11.	GC/MS Instrument performance check	_ A	7
	Initial calibration	Á	2 RSD = 20 ? +r
IV.	Continuing calibration/ICV	ŚW	Cav/1QV = 302
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	MA	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/RL/LOQ/LODs	A	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	A	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	SW	$\mathcal{D} = 10$ m
XVII.	Field blanks	Shi	$\frac{1}{18} = 1 EB = 2$

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ℋND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

		-				
 1	TB-4-7/18/13	11	DUPE-4-3Q13	- 21	BWG1452-B1K1	31
+ 2	EB-4-7/18/13	12	MW-25-2	22	· · · · · · · · · · · · · · · · · · ·	32
+ 3	MW-22-3**	13	MW-25-1	23		33
4	MW-22-2	14	MW-25-4MS	24		34
5	MW-22-1	15	MW-25-4MSD	25		35
6	MW-26-2	16		26		36
7	MW-26-1	17		27		37
8	MW-25-5	18		28		38
9	MW-25-4	19		29		39
10	MW-25-3)	20		30		40

VALIDATION FINDINGS CHECKLIST

Page: <u>1</u> of <u>2</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>\</u>

.

Method: Volatiles (EPA Method 524.2)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	_			
All technical holding times were met.		r		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	1			
Were the BFB performance results reviewed and found to be within the specified criteria?	/	·		
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	$\left \right $			
Were all percent relative standard deviations (%RSD) < 20%?				
IV. Continuing calibration	1			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<			
Were all percent differences (%D) <u>≤</u> 30%?				
V. Blanks			[
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within QC limits?	/			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates				
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?	(
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?		L		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

	Page:	2_of_2_
	Reviewer:	JVG
2nd	Reviewer:	<u> </u>

Validation Area	Yes	No	NA	Findings/Comments
IX. Regional Quality Assurance and Quality Control			<u> </u>	
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within +/-40% from the associated calibration standard?	\angle			
Were retention times within - 30% of the last continuing calibration or +/- 50% of the initial calibration?				
XI. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/	-		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?	/		Н	T
Were relative intensities of the major ions within <u>+</u> 20% between the sample and the reference spectra?	/		J	29
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		A	1	
XIV. System performance		r		
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XVII. Field blanks				
Field blanks were identified in this SDG.	\angle			
Target compounds were detected in the field blanks.			_	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method 524.2)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachioroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. Pentachloro ethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ТТТТ.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-lsopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Qualifications

J/NJ/P

	se see qualifications <u>N/A</u> Was a co <u>) N/A</u> Were all	below for all questions answered ontinuing calibration standard ana percent differences (%D) < 30%	"N". Not applicable que alyzed at least once ever ?	stions are identified as "N y 12 hours for each instru Finding %D	I/A". Iment?	
#	Date	Standard ID	Compound	(Limit: <u><</u> 30.0%)		
	/ 2/13	1201468-401				- p/C
	7/22/13	1309468-0013	В	45.0	11-13	
			MMM	33.0		
	7/22/13	1309468-0014	NNNN	58,0		
	····			· · ·		
 						

LDC#: 30249A1

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC MS Volatiles (EPA Method 524.2)

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (ug/L)	
Compound	10	11	RPD
к	0.58	0.48	19
AA	0.21	0.16	27

V:\FIELD DUPLICATES\30249A1.wpd

VALIDATION FINDINGS WORKSHEET **Field Blanks**

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

2

Y)N N/A <u>Y/ N_N/A</u>

Were field blanks identified in this SDG? Were target compounds detected in the field blanks?

Sample:

 $(\underbrace{ f_{1}}_{1})$ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration
CC	0.

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration

Sample: _____ Field Blank / Trip Blank / Rinsate (circle one)

Compound	Concentration Units ()

LDC #: 30 249 A

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound

 C_x = Concentration of compound, S= Standard deviation of the RRFs, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

X = Mean of the RRFs

		Calibration			Reported RRF	Recalculated RRF	Reported Average RRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound	(IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	7/15/2013	Benzene	(IS1)	1.92134	1.92134	1.88704	1.88704	11.85	11.85
	MS V5		Trichloroethene	(IS2)	0.36392	0.36392	0.34011	0.34011	11.09	11.09
			1,1,2,2-TCA	(IS3)	0.58990	0.58990	0.54691	0.54691	6.84	6.84

LDC # 30299 A1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS VOA (EPA Method 524.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CC)	(CC)		
1	22jul02	07/22/13	Benzene	(IS1)	1.887043	1.896091	1.896091	0.5	0.5
	13094698-ccv1		Trichloroethene	(IS2)	0.340107	0.340557	0.340557	0.1	0.1
			1,1,2,2-TCA	(IS3)	0.546910	0.594341	0.594341	8.7	8.7

LDC #: Jorg A)

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer: ~~

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: ± 3

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported Recalculated		
Toluene-d8	10,0	9.82	98.2	ĺ8.γ	6
Bromofluorobenzene		8-96	89.9	89.9	
1,2-Dichlorobenzene-d4		10.65	106	107	
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	te Percent Percen Recovery Recove		Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:_____

	Surrogate Spiked	Surrogate Surrogate Spiked Found		Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

LDC #: 30249 A1

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>/</u>

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: 14 /15

Compound	Spike Added		Sample Concentration (い) /し)	Sample Spiked Sample Concentration Concentration		Matrix Spike		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Reçaic.	Reported	Recalc
1,1-Dichloroethene	25,00	25,00	q	26.120	26.37	164	104	105	105	0,953	0,95
Trichloroethene				24.58	24.60	99.5	99.5	98.4	18.F	1.13	1,13
Benzene				24.76	25.08	99.0	99,0	100	100	1.28	1-28
Toluene				25.67	25.21	[03	103	101	[0]	1.8/	1.81
Chlorobenzene	X	V		25.170	24.99	161	<i>lo j</i>	100	(00)	°- 718	0,7~
		ব									

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>/</u>

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BNG 1454- \$51

	Sr	oike	Spiked S	Sample	LCS		LCSD			
Compound	Аd (ИС)	ded L)	Concen (৸ঀ	tration /L_)	Percent Recovery		Percent Recovery		RPD	
			LCS	LCSD	Reported	Recalc.	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	25.0	MA	2491	MA	99.6	٩٩.(
Trichloroethene			23.58		94.3	94.3				
Benzene			23.78		95.1	75,1				
Toluene			74.08		96.3	96.3		· ·		
Chlorobenzene	ł	ð	22.81	J	91.2	91.2				
		· · · · ·								

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Example:

METHOD: GC/MS VOA (EPA Method 524.2)

Compound results reported with a positive detect were recalculated and verified using the following equation:

Concent	ration	$= \frac{(A_{\cdot})(I_{*})(DF)}{(A_{*b})(RRF)(V_{o})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V。	=	Volume or weight of sample purged in milliliters (ml) or grams (g).
Df	=	Dilution factor.
%S	=	Percent solids, applicable to soils and solid matrices only.

Sample I.D. <u>3</u> , <u>Trich was ethere</u>	
Conc. = $(1734)(10)()$	-
= 6.129	
2. 0. 13 ug L	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
				* <u> </u>	
	·				
1					
	(0.13.7				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JF	չ
-			

	Collection	Date:	July 18,	2013
--	------------	-------	----------	------

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15120

Sample Identification

EB-4-7/18/13 MW-22-3** MW-22-2 MW-22-1 MW-26-2 MW-26-1 MW-25-5 MW-25-4 MW-25-3 DUPE-4-3Q13 MW-25-3 MW-25-1 MW-25-1 MW-25-4MS MW-25-4MSD MW-25-4DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MW-25-3 and DUPE-4-3Q13 were identified as field duplicates. No chromium was detected in any of the samples with the following exceptions:

	Concentr			
Analyte	MW-25-3	DUPE-4-3Q13	RPD	
Chromium	3.3	3.1	6	

XV. Field Blanks

Sample EB-4-7/18/13 was identified as an equipment blank. No chromium was found with the following exceptions:

Blank ID	Analyte	Concentration (ug/L)
EB-4-7/18/13	Chromium	0.67

NASA JPL Chromium - Data Qualification Summary - SDG 13-15120

No Sample Data Qualified in this SDG

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15120

No Sample Data Qualified in this SDG

3	02	49	A	4V	V.	w	pd

LDC #:	30249A4	VALIDATIO
SDG #	1315120	_
Labora	tory: BC Laborator	ies, Inc.
	Chromium	
METH)D: Metals (EPA N	Method 200.7/ 200.8)

TION COMPLETENESS WORKSHEET

Level III/IV

Date: Page: \ Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area **Comments** P 7 13 Technical holding times I. Sampling dates: (-)П. ICP/MS Tune P 111. Calibration A IV. Blanks Λ Notrequired V. ICP Interference Check Sample (ICS) Analysis VI. Matrix Spike Analysis Δ VII. Duplicate Sample Analysis A VIII. Laboratory Control Samples (LCS) lot reviewed for PRIPU ' m Д IX. Internal Standard (ICP-MS) ٨. Х. Furnace Atomic Absorption QC Λ XI. ICP Serial Dilution XII. Sample Result Verification Not reviewed for Level III validation. A XIII. Overall Assessment of Data 10 XIV. Field Duplicates (5 Field Blanks XV

A = Acceptable N = Not provided/applicable

ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank

Validated Samples:** Indicates sample underwent Level IV validation $\label{eq:sample}$

1	EB-4-7/18/13	11	MW-25-2	21	31
2	MW-22-3**	12	MW-25-1	22	32
3	MW-22-2	13	MW-25-4MS	23	33
4	MW-22-1	14	MW-25-4MSD	24	34
5	MW-26-2	15	MW-25-4DUP	25	35
6	MW-26-1	16		26	36
7	MW-25-5	17		27	37
8	MW-25-4	18		28	38
9	MW-25-3	19		29	39
10	DUPE-4-3Q13	20		30	40

Notes:_

Note:

SW = See worksheet

FB = Field blank

EB = Equipment blank

LDC #:______

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/	ſ		
Cooler temperature criteria was met.				
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	\square			
Were %RSD of isotopes in the tuning solution ≤5%?				
III. Calibration				
Were all instruments calibrated daily, each set-up time?	<			
Were the proper number of standards used?				
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?	<			
Were all initial calibration correlation coefficients <a> 0.995?				
IV. Blanks		,		
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?			/	
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/	,		
VII. Laboratory control samples	<i>-/</i> /1			
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

Method:Metals (EPA SW 846 Method 6010B/7000/6020)

Validation Area			NA	Findings/Comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?				
Do all applicable analysies have duplicate injections? (Level IV only)				
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)				
Were analytical spike recoveries within the 85-115% QC limits?		_		
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	~			
Were all percent differences (%Ds) < 10%?	/			
Was there evidence of negative interference? If yes, professional judgement will be used to gualify the data.]		/	
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	_			
If the %Rs were outside the criteria, was a reanalysis performed?			/	
XI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		\leq		
Were the performance evaluation (PE) samples within the acceptance limits?				
XII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Overall assessment of data		,		
Overall assessment of data was found to be acceptable.	/			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.	_			
Target analytes were detected in the field duplicates.)		
XV. Field blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.		$\widehat{}$		

LDC#: 30249A4_

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

	Concentra		
Analyte	9 10		RPD
Chromium	3.3	3.1	6

\\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30249A4.wpd

	2nulaA1
LDC #:_	<u> </u>

VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>

__(circle one)

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

(Ŷ) N N/A	Were field blanks identified in this SDG?
YN N/A	Were target analytes detected in the field blanks?

Sample: ______ Field Blank / Trip Blank / Rinsate / Other

Analyte	Concentration
Cr	0,67 mg/L
	i

Sample: ______ Field Blank / Trip Blank / Rinsate / Other______ (circle one)

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Units ()

Concentration
Unit

LDC #: 3024947

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found_x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
TCV	ICP/MS (Initial calibration)	\sim	52,009	50	104	104	Ψ
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
CCV.	ICP/MS (Continuing calibration)	ζ	39,953	40	99.9	99.9	$\frac{1}{1}$
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: <u>Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 50 °

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = [S-D]x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 %D = <u>|I-SDR|</u> x 100
 Where, I = Initial Sample Result (mg/L)

 I
 SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)
	ICP interference check						
LCS	Laboratory control sample	C	41,278	40	103	103	Ý
B	Matrix spike		(SSR-SR) 37,126	40	92.8	92,8	
15	Duplicate		1.5180	1.4420	5,14	B. 14	
	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	lof
Reviewer:	OR
2nd reviewer:_	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>X N N/A</u> <u>Y N N/A</u> <u>Y N N/A</u> <u>Y N N/A</u> <u>Are results within the calibrated range of the instruments and within the linear range of the ICP? <u>Y N N/A</u> <u>Are all detection limits below the CRDL?</u> <u>Detected analyte results for ______</u> were recalculated and verified using the following equation:</u>

Recalculation:

Concentration =(RD)(FV)(Dil)
(În. Vol.)RD =Raw data concentrationFV =Final volume (ml)In. Vol. =Initial volume (ml) or weight (G)Dil =Dilution factor

Ran Dara = 2,666 mg/L = 2,7

Calculated Reported Concentration Concentration Acceptable (NSIL) # Analyte · (wg/4) Sample ID (Y/N)G.7 а.

Note:_

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: July 18, 2013
- LDC Report Date: August 29, 2013
- Matrix: Water
- Parameters: Wet Chemistry
- Validation Level: EPA Level III & IV
- Laboratory: BC Laboratories, Inc.
- Sample Delivery Group (SDG): 13-15120

Sample Identification

EB-4-7/18/13 MW-22-3** MW-22-2 MW-22-1 MW-26-2 MW-26-1 MW-25-5 MW-25-4 MW-25-3 DUPE-4-3Q13 MW-25-3 DUPE-4-3Q13 MW-25-1 MW-25-1 MW-25-4MSD MW-25-4MSD MW-25-4DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-25-3 and DUPE-4-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce		
Analyte	MW-25-3	DUPE-4-3Q13	RPD
Hexavalent Chromium	0.0030 mg/L	0.0028 mg/L	7
Perchlorate	11 ug/L	11 ug/L	0

XI. Field Blanks

Sample EB-4-7/18/13 was identified as an equipment blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15120

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15120

No Sample Data Qualified in this SDG

LDC #: <u>30249A6</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>1315120</u>	
Laboratory: <u>BC Laboratories</u> , In	<u>c.</u>

Date: <u>8/20/</u> 13
Page:_ <u>└</u> of__
Reviewer: 0
2nd Reviewer:

METHOD: Perchlorate (EPA Method 314.0), Hexavalent Chromium (EPA SW846 Method 7196)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 7/18/13
	Initial calibration	4	
- 111.	Calibration verification	A	
IV	Blanks	A	
V	Matrix Spike/Matrix Spike Duplicates	A	ms/p
VI.	Duplicates	A	Qp
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	A	Not reviewed for Level III validation.
IX.	Overall assessment of data	A	
Χ.	Field duplicates	SW	(9,10)
L XI	Field blanks	NO	EB=1

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

				Contraction of Contra	2
1	EB-4-7/18/13	11	MW-25-2	21	31
2	MW-22-3**	12	MW-25-1	22	32
3	MW-22-2	13	MW-25-4MS	23	33
4	MVV-22-1	14	MW-25-4MSD	24	34
5	MW-26-2	15	MW-25-4DUP	25	35
6	MVV-26-1	16		26	36
7	MVV-25-5	17		27	37
8	MW-25-4	18		28	38
9	MW-25-3	19		29	39
10	DUPE-4-3Q13	20		30	40

Notes:_

Method: Inorganics (EPA Method Second)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
Cooler temperature criteria was met.				
II. Calibration	_			
Were all instruments calibrated daily, each set-up time?	\setminus			
Were the proper number of standards used?				
Were all initial calibration correlation coefficients \geq 0.995?				
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?				
Were titrant checks performed as required? (Level IV only)			-	
Were balance checks performed as required? (Level IV only)	1	/**		
III. Blanks				i
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	~			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	\checkmark			
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq 20\%$ for waters and $\leq 35\%$ for soil samples? A control limit of $\leq CRDL(\leq 2X CRDL$ for soil) was used for samples that were $\leq 5X$ the CRDL, including when only one of the duplicate sample values were $\leq 5X$ the CRDL.	/			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			l <u></u>
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		-7		
Were the performance evaluation (PE) samples within the acceptance limits?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification			-	
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
X. Field blanks				
Field blanks were identified in this SDG.	1	/		
Target analytes were detected in the field blanks.		/		

LDC #: 3024946

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Page: 1_of 1_ Reviewer: CR 2nd reviewer: 1/

Sample ID	Parameter
1-12	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cret ClO_4$
20110	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ O_{4}
961315	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOQ Cr6 (ClO_4)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6+ClO_4$
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH TDS CLE NO NO SO, O-PO, Alk CN NH TKN TOC Cr6+ CIO,

Comments:

LDC#<u>30249A6</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Inorganics: Method See Cover

Analyte	9	10	RPD	
Hexavalent Chromium (mg/L)	0.0030	0.0028	7	
Perchlorate	11	11	0	

\\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30249A6.wpd

LDC #: 30249AG

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: ¹ of Reviewer: O 2nd Reviewer:

Method: Inorganics, Method See Cover

The correlation coefficient (r) for the calibration of \underline{ClQ}_{4} was recalculated. Calibration date: 7/22/3

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.0	0			
		s2	2	0.0022	0.999877	0.999818	
		s3	4	0.0042			
	qa	s4	6	0.0062			<u>ب</u>
		s5	10	0.0103			(
		s6	20	0.0209			
Calibration verification	C(6+	CCV	0,05	0,0521A	104	104	
Calibration verification	J	\downarrow		0.051962	104	104	
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 302

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

.

1 1
Page:of_/
Reviewer: 92
2nd Reviewer:

METHOD: Inorganics, Method Stecaver

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where,
 Found =
 concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

 True
 Found = SSR (spiked sample result) - SR (sample result).

 True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated	Reported %R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	ClOy	10.10	10	102	102	
13	Matrix spike sample	C6 ^{6†}	(SSR-SR)	0,052632	104	104	
15	Duplicate sample	0	9,3259	8:8926	4.76	4.76	Ţ

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of
Reviewer:	ar-
2nd reviewer:	N/

_____reported with a positive detect were

METHOD: Inorganics, Method ______

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Have results been reported and calculated correctly? 'Y N N/A Y/ N_ N/A

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

grea-Intercept Slope

YN N/A

Recalculation: 0002 $\overline{O}_{l}OO$

#	Sample ID	Analyte	Reported Concentration (M81-)	Calculated Concentration	Acceptable (Y/N)
	ð	CIQ	3,6	3,8	Ŷ
		GGA (mg/L)	0,0017	0,0010	J
		C			
			·····		
			- <u></u>		

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA J	PL

Collection Date: July 19, 2013

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15237

Sample Identification

TB-5-7/19/13 SB-2-7/19/13 EB-5-7/19/13 MW-23-3 MW-23-2 MW-23-2 MW-23-1** MW-3-4** MW-3-4** MW-3-3 MW-3-2 DUP-5-3Q13

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/22/13 (1309468-CCV2)	Pentachloroethane	33.0	BWG1453-Blk1 BWG1454-Blk1	J (all detects) UJ (all non-detects)	Р
7/22/13 (1309468-CCV3)	Bromomethane Naphthalene	45.0 33.0	TB-5-7/19/13 SB-2-7/19/13 EB-5-7/19/13 MW-23-3 MW-23-2 MW-23-1** MW-3-4** MW-3-3 MW-3-2 DUP-5-3Q13	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

Date	Compound	%D	Associated Samples	Flag	A or P
7/22/13 (1309468-CCV4)	Pentachloroethane	58.0	TB-5-7/19/13 SB-2-7/19/13 EB-5-7/19/13 MW-23-3 MW-23-2 MW-23-1** MW-3-4** MW-3-4** MW-3-2 DUP-5-3Q13	J (all detects) UJ (all non-detects)	Ρ

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation

All compound quantitations were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-3-2 and DUP-5-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples.

XVII. Field Blanks

Sample TB-5-7/19/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-5-7/19/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration	
EB-5-7/19/13	Toluene	0.15 ug/L	

Sample SB-2-7/19/13 was identified as a source blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
SB-2-7/19/13	Toluene	0.16 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 13-15237

SDG	Sample	Compound	Flag	A or P	Reason
13-15237	TB-5-7/19/13 SB-2-7/19/13 EB-5-7/19/13 MW-23-3 MW-23-2 MW-23-1** MW-3-2 MW-3-3 MW-3-2 DUP-5-3Q13	Bromomethane Naphthalene Pentachloroethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15237

No Sample Data Qualified in this SDG

LDC #:_	30249B1	_ VALID/
SDG #:	1315237	_
Laborat	orv: BC Laboratories	s. Inc.

LIDATION COMPLETENESS WORKSHEET

Level III/IV

Date: 8/23/13 Page: 1 of / Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	_ A	Sampling dates: 7/19/13
<u> </u>	GC/MS Instrument performance check	A	
- 111.	Initial calibration	A	2 RSD 4202 12
IV.	Continuing calibration/ICV	SW	cav/101 = 30 2
V.	Blanks	Ă	
VI.	Surrogate spikes	_ A	
VII.	Matrix spike/Matrix spike duplicates	MA	1315120-09
VIII.	Laboratory control samples	A	VCS
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/RL/LOQ/LODs	A	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	A	Not reviewed for Level III validation.
XIV.	System performance	Α	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	ND	j = 9, 10
XVII.	Field blanks	SW	*78=1 S8=2 E8=3

Note:

A = Acceptable✗ ND =N = Not provided/applicableR =SW = See worksheetFB =

✗ ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

r	V.N.+ ¿ Y				
1	TB-5-7/19/13	11 1	BWG1453- \$K1	21	31
<u>†</u>	SB-2-7/19/13	- Y 12	BNG1454-	22	32
+ 3 2	EB-5-7/19/13	13		23	33
4 '	MW-23-3	14		24	34
5	MW-23-2	15	·····	25	35
6	MW-23-1**	16		26	36
+ * 7	MW-3-4**	17		27	37
8	MW-3-3	18		28	38
9	MVV-3-2	19		29	39
$\frac{-1}{10}$	DUP-5-3Q13 b	20		30	40

VALIDATION FINDINGS CHECKLIST

Page: <u>1_of_2</u> Reviewer: <u>JVG</u> 2nd Reviewer: _____

Method: Volatiles (EPA Method 524.2)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		c		
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	T			
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?		<u> </u>		
III. Initial calibration	1			
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20%?				
IV. Continuing calibration	in an an an an an an an an an an an an an	5		
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) < 30%?			-	
V. Blanks				and a state of the
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes	T			
Were all surrogate %R within QC limits?	\leq			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates				
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			>	
VIII Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the OC limits?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Regional Quality Assurance and Quality Control	1		P	
Were performance evaluation (PE) samples performed?				<i>f</i>
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards	1			
Were internal standard area counts within +/-40% from the associated calibration standard?				
Were retention times within - 30% of the last continuing calibration or +/- 50% of the initial calibration?				
XI. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within <u>+</u> 20% between the sample and the reference spectra?	/			
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance		-		
System performance was found to be acceptable.	/			
XV. Overall assessment of data	1			
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates	r			
Field duplicate pairs were identified in this SDG.		•		
Target compounds were detected in the field duplicates.				
XVII. Field blanks		7		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method 524.2)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM, Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. Pentachloro & thank
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	υυυυ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	WW.

LDC #: 30249 /

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: _____of___ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS VOA (EPA Method 524.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{V N N/A}{V N N/A}$ Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were all percent differences (%D) \leq 30% ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	7/22/13	1309468-0012	NNNN	33.0	BWG1453-BIKI BWG14	54-BIKI J/UJ/P
	,					
	7/22/13	1309468 - CCV3	B	45.0	1-10	
	, .		МММ	<u> </u>		
	·····	1369468- 0014	NNNN	58.0		
					· · · · ·	
						· · · · · · · · · · · · · · · · · · ·
			· · · ·			
						

LDC #:	3024 B/	VALIDATION FINDINGS WORKSHEI <u>Field Blanks</u>	ET Page:of/ Reviewer:6
METHOD:	GC/MS VOA (EPA S	$Mc+h_{0}$ s 24γ SW 846 Method 8260)	
YN N/A YN N/A	Were field blan Were target co	ks identified in this SDG? mpounds detected in the field blanks?	
Sample: _	2 (SB)	_ Field Blank / Trip Blank / Rinsate (circle one)	
		Compound	Concentration Units (16/L_)
		CC	0, 16
		······	
Sample: _	3 (EB) ·	_ Field Blank / Trip Blank / Rinsate (circle one)	
		Compound	Concentration Units (^V g /L)
		CC	0,15
L Sample:		_ Field Blank / Trip Blank / Rinsate (circle one)	
		Compound	Concentration Units (

LDC #: 30 - 49 B1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

		Calibration			Reported RRF	Recalculated RRF	Reported Average RRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound	(IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	7/15/2013	Benzene	(IS1)	1.92134	1.92134	1.88704	1.88704	11.85	11.85
	MS V5		Trichloroethene	(IS2)	0.36392	0.36392	0.34011	0.34011	11.09	11.09
			1,1,2,2-TCA	(IS3)	0.58990	0.58990	0.54691	0.54691	6.84	6.84

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u>\</u> of
Reviewer:	JVG
2nd Reviewer:	\sim

METHOD: GC/MS VOA (EPA Method 524.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CC)	(CC)		
1	22jul02	07/22/13	Benzene	(IS1)	1.887043	1.896091	1.896091	0.5	0.5
	13094698-ccv1		Trichloroethene	(IS2)	0.340107	0.340557	0.340557	0.1	0.1
			1,1,2,2-TCA	(IS3)	0.546910	0.594341	0.594341	8.7	8.7
2	22jul33	07/22/13	Benzene	(IS1)	1.887043	1.838965	1.838965	2.5	2.5
	13094698-ccv3		Trichloroethene	(IS2)	0.340107	0.340519	0.340519	0.1	0.1
			1,1,2,2-TCA	(IS3)	0.546910	0.539016	0.539016	1.4	1.4

LDC #: 30249 \$1

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer: <u></u>

METHOD: GC/MS VOA (EPA Method 524.2)

·····

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 6

	Surrogate Spiked	Surrogate Percent Found Recovery		Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8	10.0	10.34	103	163	σ
Bromofluorobenzene		8.92	89.2	89.2)
1,2-Dichlorobenzene-d4		(°. 79	168	108	1
Dibromofluoromethane		1			

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

LDC #: 30249 81

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: 1_of_1 Reviewer: JVG 2nd Reviewer:

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: ______ 14 /15

	Sp	ike	Sample	Spiked Sample		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
Compound	Ad (146	ded //)	Concentration	Conce (143	ntration /し	Percent	Recovery	Percent	Recovery	R	PD
		MSD	989-6-	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
1,1-Dichloroethene	25,00	25,00	q	26.120	26.37	164	104	105	105	0,953	0,95
Trichloroethene				24.58	24.60	99.5	99.5	98.4	18.F	1.15	1,13
Benzene				24.76	25.08	99.0	99.0	100	100	1.28	1.28
Toluene				25.67	25.21	(03	103	101	[8]	1.81	1.81
Chlorobenzene	8			25.170	24.99	161	loj	160	(00)	S. 718	0.7-
		N .									

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer: _____

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: _____BNG 1454- \$51

	Sp	pike	Spiked S	Spiked Sample				LCSD			
Compound	Ad (1/5	Added (パノー)		Concentration		Recovery	Percent F	Recovery	R	PD	
					Reported	Recalc	Reported	Recalc	Reported	Recalculated	
1,1-Dichloroethene	25.0	MA	2991	MA	99.6	૧૧.(
Trichloroethene			23.58		94.3	94.3					
Benzene			23.78		95.1	75.1					
Toluene			24.08		96.3	96.3					
Chlorobenzene	ł	Y	22.81		91.2	91.2					
						· · · ·					
in in											

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 30249 h)

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer:

METHOD: GC/MS VOA (EPA Method 524.2)

Compound results reported with a positive detect were recalculated and verified using the following equation:

Concent	ration	$= \frac{(A_{\cdot})(I_{*})(DF)}{(A_{t_{0}})(RRF)(V_{o})(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. 6, Trich Loro ethene
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (37734)(10)()
RRF	=	Relative response factor of the calibration standard.	1340II
V _o	=	Volume or weight of sample purged in milliliters (ml) or grams (g).	= 2.705
Df	=	Dilution factor.	2 27. 6
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
					·····

LDC Report# 30249B4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL

Collection	Date:	July 19,	2013

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15237

Sample Identification

SB-2-7/19/13 EB-5-7/19/13 MW-23-4 MW-23-3 MW-23-2 MW-23-1** MW-3-4** MW-3-4** MW-3-3 MW-3-2 DUP-5-3Q13 SB-2-7/19/13MSD SB-2-7/19/13DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MW-3-2 and DUP-5-3Q13 were identified as field duplicates. No chromium was detected in any of the samples with the following exceptions:

	Concentr		
Analyte	MW-3-2	DUP-5-3Q13	RPD
Chromium	0.56	0.50U	200

XV. Field Blanks

Sample EB-5-7/19/13 was identified as an equipment blank. No chromium was found.

Sample SB-2-7/19/13 was identified as a source blank. No chromium was found.

NASA JPL Chromium - Data Qualification Summary - SDG 13-15237

No Sample Data Qualified in this SDG

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15237

No Sample Data Qualified in this SDG

30249D4VV.WDU	30249B4W.wpd
---------------	--------------

LDC #: 30249B4 SDG #: 1315237 Laboratory: BC Laboratories, Inc. Chamium

VALIDATION COMPLETENESS WORKSHEET

Level III/IV

Date:	8120/13
Page:_	lof
Reviewer:	OL_
2nd Reviewer:	\downarrow

METHOD: Metals (EPA Method 200.7/200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments R 19 71 ١. Technical holding times Sampling dates: Δ 11. ICP/MS Tune Ā III. Calibration A IV. Blanks No+required \sim V. ICP Interference Check Sample (ICS) Analysis A VI. Matrix Spike Analysis Δ VII. Duplicate Sample Analysis Δ VIII. Laboratory Control Samples (LCS) reveneed for level ΊIL Δ Ab+ IX. Internal Standard (ICP-MS) Furnace Atomic Absorption QC Х. XI. **ICP Serial Dilution** XII. Sample Result Verification Not reviewed for Level III validation. 9 XIII. Overall Assessment of Data Ю XIV. **Field Duplicates** EB=0 SB=1 N۲ XV Field Blanks

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation waxer

1	SB-2-7/19/13	11	SB-2-7/19/13MS	21	31	
2	EB-5-7/19/13	12	SB-2-7/19/13MSD	22	32	
3	MW-23-4	13	SB-2-7/19/13DUP	23	33	
4	MW-23-3	14		24	 34	
5	MW-23-2	15		25	 35	
6	MW-23-1**	16		26	36	
7	MVV-3-4**	17		27	 37	
8	MVV-3-3	18	· · · · · · · · · · · · · · · · · · ·	28	 38	
9	MVV-3-2	19		29	 39	
10	DUP-5-3Q13	20		30	40	

Notes:

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			L	
All technical holding times were met.	/	_		
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?				
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?				
Were all initial calibration correlation coefficients <a> 0.995?				
IV. Blanks				
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample		\sim		
Were ICP interference check samples performed daily?				,
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

Validation Area	Yes	No	NA	Findings/Comments				
VIII. Furnace Atomic Absorption QC								
If MSA was performed, was the correlation coefficients > 0.995?			/					
Do all applicable analysies have duplicate injections? (Level IV only)								
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/					
Were analytical spike recoveries within the 85-115% QC limits?								
IX. ICP Serial Dilution								
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		/						
Were all percent differences (%Ds) < 10%?								
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.								
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)								
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	$\langle \rangle$							
If the %Rs were outside the criteria, was a reanalysis performed?			/					
XI. Regional Quality Assurance and Quality Control								
Were performance evaluation (PE) samples performed?								
Were the performance evaluation (PE) samples within the acceptance limits?								
XII. Sample Result Verification								
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	<u>`</u>						
XIII. Overall assessment of data								
Overall assessment of data was found to be acceptable.								
XIV. Field duplicates								
Field duplicate pairs were identified in this SDG.	/							
Target analytes were detected in the field duplicates.			;					
XV. Field blanks								
Field blanks were identified in this SDG.	/							
Target analytes were detected in the field blanks.		1						

LDC#: 30249B4

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

	Concentra	Concentration (ug/L)			
Analyte	9	10	RPD		
Chromium	0.56	0.50U	200		

\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30249B4.wpd

LDC #: $\mathcal{D}^{L}\mathcal{A}\mathcal{A}\mathcal{A}$

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found_x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
JCV	ICP/MS (Initial calibration)	Cr	48,933	50	97,9	97,9	4
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
CCVB	ICP/MS (Continuing calibration)	C	37.169	40	999	92,9	4
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: <u>Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 204

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>|S-D|</u> x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = <u>|I-SDR|</u> x 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Beported		
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	(Y/N)	
\wedge	ICP interference check							
LCS	Laboratory control sample	Cr	40,511	40	101	101	Y	
11	Matrix spike	·	(SSR-SR) 39,660	ЧŎ	99,2	99,2		
B	Duplicate	1	ND	ND	0	\bigcirc	\checkmark	
	ICP serial dilution							

Comments: Refer to appropriate worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:of	
Reviewer: OR	
2nd reviewer:	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qua <u>X N N/A</u> <u>Y N N/A</u> <u>Y N N/A</u>	qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Have results been reported and calculated correctly? Are results within the calibrated range of the instruments and within the linear range of the ICP? Are all detection limits below the CRDL?							
Detected analy equation:	ected analyte results for were recalculated and verified using the follow ation:							
Concentration = RD = FV = In. Vol. = Dil =	(RD)(FV)(Dil) (In. Vol.) Raw data conce Final volume (m Initial volume (m Dilution factor	Recalculation ntration I) I) or weight (G)	= $0 = 6.00$	74.1g/L				
#S	ample ID	Analyte	Reported Concentration (Mg()_	Calculated Concentration	Acceptable (Y/N)			
	\mathcal{O}	Cr	$\neg_i O$	1.0	$ \uparrow$			

 the second second second second second second second second second second second second second second second s		

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA J	JPL

Collection	Date:	July 19,	2013
		, ,	

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15237

Sample Identification

SB-2-7/19/13 EB-5-7/19/13 MW-23-4 MW-23-3 MW-23-2 MW-23-1** MW-3-4** MW-3-3 MW-3-2 DUP-5-3Q13 SB-2-7/19/13MS SB-2-7/19/13MSD SB-2-7/19/13DUP **MW-23-3MS** MW-23-3MSD MW-23-3DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 16 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-3-2 and DUP-5-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples.

XI. Field Blanks

Sample EB-5-7/19/13 was identified as an equipment blank. No contaminant concentrations were found.

Sample SB-2-7/19/13 was identified as a source blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15237

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15237

No Sample Data Qualified in this SDG

LDC #:	<u>30249B6</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	1315237	Level III/IV
Laborato	ory: BC Laboratorie	es, Inc

Date: 8/20/13
Page: <u>\</u> of <u>)</u>
Reviewer: <u></u>
2nd Reviewer:

METHOD: Perchlorate (EPA Method 314.0), Hexavalent Chromium (EPA SW846 Method 7196)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 7/19/10
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	mslo
VI.	Duplicates	A	De
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	\square	Not reviewed for Level III validation.
IX.	Overall assessment of data	A	
Х.	Field duplicates	ND	(9,10)
x	Field blanks	<u> </u>	SB=1 EB=2

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	SB-2-7/19/13	11	SB-2-7/19/13MS	21	31
2	EB-5-7/19/13	12	SB-2-7/19/13MSD	22	32
3	MW-23-4	13	SB-2-7/19/13DUP	23	33
4	MVV-23-3	14	MW-23-3MS	24	34
5	MW-23-2	15	MW-23-3MSD	25	35
6	MW-23-1**	16	MW-23-3DUP	26	36
7	MW-3-4**	17		27	37
8	MW-3-3	18		28	38
9	MW-3-2	19		29	39
10	DUP-5-3Q13	20		30	40

Notes:_

Method:Inorganics	(EPA Method	Gecorer)	
			_

	1	_	r				
Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
All technical holding times were met.	~						
Cooler temperature criteria was met.							
II. Calibration							
Were all instruments calibrated daily, each set-up time?							
Were the proper number of standards used?	$\langle \rangle$						
Were all initial calibration correlation coefficients <a> 0.995?	$\langle \rangle$						
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?							
Were titrant checks performed as required? (Level IV only)			\langle	· · · · · · · · · · · · · · · · · · ·			
Were balance checks performed as required? (Level IV only)				1			
III. Blanks							
Was a method blank associated with every sample in this SDG?							
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.							
IV. Matrix spike/Matrix spike duplicates and Duplicates							
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/	_					
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	_						
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	~						
V. Laboratory control samples							
Was an LCS anaylzed for this SDG?	\sum						
Was an LCS analyzed per extraction batch?							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?							
VI. Regional Quality Assurance and Quality Control							
Were performance evaluation (PE) samples performed?		\land		-			
Were the performance evaluation (PE) samples within the acceptance limits?		-	/				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were detection limits < RL?	/			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.		/		
X. Field blanks				
Field blanks were identified in this SDG.		-		
Target analytes were detected in the field blanks.				

LDC #: 3024986

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Paramotor
THE TOS CLE NO. NO. SO. O-PO. Alk CN NH. TKN TOC Cret CIO.
pH TDS CL F NO ₂ NO ₂ SO O -PO Alk CN NH ₂ TKN TOC Cr6+ ClO A
pH TDS CL F NO ₂ NO ₂ SO O_2 Alk CN NH ₂ TKN TOC Cr6+ ClO A
pH TDS CL F NO ₂ NO ₂ SO O-PO Alk CN NH ₂ TKN TOC $Cr6+ClO$
pH TDS CI F NO ₂ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₂ TKN TOC Cr6 $+$ ClO ₄
pH TDS CI F NO ₃ NO ₃ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Aik CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH_TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
pH_TDS_CL_F_NONOSOO-POAlk_CN_NHTKN_TOC_Cr6+_ClO

-

Comments:

Page: <u>1 of 1</u> Reviewer: <u>CR</u> 2nd reviewer: <u>V</u>

LDC #: 3024986

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: **Reviewer:** 2nd Reviewer:

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of 20 was recalculated. Calibration date: 7/2003

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.0	0			
		s2	2	0.0022	0.999877	0.999818	
		s3	4	0.0042			
	Clay	s4	6	0.0062			
		s5	10	0.0103			
		S6	20	0.0209			
Calibration verification		CCV	10	10.108	101	101	
Calibration verification	C(0+		0.05	(),053525	107	107	
Calibration verification	T	2		००५७३४२५	107	107	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._____

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

1

METHOD: Inorganics, Method Stecover

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported%R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	C104	10.426	10	104	(04	Ý
	Matrix spike sample	G6+	(ssr-sr) (),055765	0.052632	106	106	
16	Duplicate sample		2,6264	a.7856	5.88	5.88	\downarrow

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of	
Reviewer:	ar-	
2nd reviewer:		~

METHOD: Inorganics, Method ______

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Have results been reported and calculated correctly? YN N/A N <u>N/A</u>

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

1 Du reported with a positive detect were Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

Y N N/A

Y

Recalculation:

Area + 0,0000] 6.001

0.003+0.00001 = 2.9.yll

#	Sample ID	Analyte	Reported Concentration (UQ ()	Calculated Concentration (<i>い</i> 肴〜)	Acceptable (Y/N)
	6	CQ	3.2	29	Y
			·		
	······································				
					·····

Note:

August 30, 2013

Battelle 505 King Avenue Room 10-1-170 Columbus, OH 43201 ATTN: Ms. Betsy Cutie

SUBJECT: NASA JPL, Data Validation

Dear Ms. Cutie,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 22, 2013. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 30280:

SDG #Fraction13-15307, 13-15416Volatiles, Chromium, Wet Chemistry

13-15509, 13-15617

The data validation was performed under EPA Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Ren Groul

Pei Geng Project Manager/Senior Chemist

	HC												At	tach	men	t 1																			
	90/10 (client sele	ct)						LDQ	; #:	302	80 ((Ba	ttel	le-S	San	Die	ego	<u>) N</u>	IAS	SA.	IPL)													
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (524)A 1.2)	C (200	r 0.8)	CI, 9 NO (300	SO₄ ₃-N 0.0)	NO (35	₂-N 3.2)	O-F (36	2O₄ 5.1)	CL (314	.O₄ 4.0)	Cr((71	VI) 96)										,								
Matrix	: Water/Soil			w	s	w	s	w	s	W	S	w	s	w	s	W	s	w	s	w	s	w	S	w	s	w	s	w	s	w	s	w	s	w	s
Α	13-15307	08/22/13	09/13/13	14	0	13	0	-	-	-	-	<u> </u>	-	15	0	13	0									L									⊢
В	13-15416	08/22/13	09/13/13	14	0	13	0	1	0	4	0	4	0	14	0	14	0			ļ						<u> </u>		<u> </u>		<u> </u>					<u> </u>
В	13-15416	08/22/13	09/13/13	約 前	0 .	-1	[*] 0	0	0	0	0	0.,	. 0	×12	٥.	劉豪	0 .		<u> </u>																\square
С	13-15509	08/22/13	09/13/13	6	0	4	0	3	0	6	0	6	0	3	0	7	0			<u> </u>															\square
D	13-15617	08/22/13	09/13/13	3	0	2	0	1	0	4	0	4	0	5	0	2	0																		
D	13-15617	08/22/13	09/13/13	-2-	- O -	-2	0	Ö	0	0	0	0	.0.	<u>.</u> 2	×0×	2.	.0		ļ																
																				ļ						ļ							\square		
	_ <u></u>																<u> </u>																		
																				ļ													\square		\square
			<u> </u>															<u> </u>	<u> </u>																
																	ļ	<u> </u>				<u> </u>									ļ				í
	- <u></u>								_								<u> </u>				<u> </u>	ļ													
																					<u> </u>		L				ļ		L	ļ					
																												<u> </u>							
																														<u> </u>					
	ve novem -																																		
Total	A/PG			40	0	35	0	5	0	14	0	14	0	40	0	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	187

LDC Report# 30280A1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 22, 2013
LDC Report Date:	August 28, 2013
Matrix:	Water
Parameters:	Volatiles
Validation Level:	EPA Level III
Laboratory:	BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15307

Sample Identification

TB-6-7/22/13 EB-6-7/22/13 MW-4-3 MW-4-2 MW-4-1 MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1 MW-4-2MS MW-4-2MSD MW-4-2MSD MW-12-3MS MW-12-3MSD

Introduction

This data review covers 14 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/23/13	tert-Butyl alcohol Pentachloroethane	38.5 41.0	All samples in SDG 13-15307	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-6-7/22/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-6-7/22/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

_1

Blank ID	Compound	Concentration (ug/L)
EB-6-7/22/13	Toluene	0.11

NASA JPL Volatiles - Data Qualification Summary - SDG 13-15307

SDG	Sample	Compound	Flag	A or P	Reason
13-15307	TB-6-7/22/13 EB-6-7/22/13 MW-4-3 MW-4-2 MW-4-1 MW-12-5 MW-12-5 MW-12-4 MW-12-3 MW-12-2 MW-12-1	tert-Butyl alcohol Pentachloroethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15307

No Sample Data Qualified in this SDG

LDC #:	<u>30280A1</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #:	<u>13-15307</u>	Level III
Laborato	ry:_ BC Laboratories,	Inc.

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	A	Sampling dates: 7/22/13
<u> </u>	GC/MS Instrument performance check	4	
Ш.	Initial calibration	A	$RSD \leq 262, r^{2}$
IV.	Continuing calibration/ICV	ธษ	1CV/ CCV = 30?
_V.	Blanks	A	
<u>VI.</u>	Surrogate spikes	_ A-	
VII.	Matrix spike/Matrix spike duplicates	XA	
VIII.	Laboratory control samples	A	Les
IX.	Regional Quality Assurance and Quality Control	N	
<u>X.</u>	Internal standards	A	
XI.	Target compound identification	N	
X11.	Compound quantitation/RL/LOQ/LODs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	su)	MTB= 1 EB= 2

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ★ ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: White

1	TB-6-7/22/13	11 1	MW-4-2MS	21	31	BWG 1569-B2K1
21	EB-6-7/22/13	12	MW-4-2MSD	22	32 z	BW G1635-BLK)
3	MW-4-3	13 -	MW-12-3MS	23	 33	
4 1	MW-4-2	14 1	MW-12-3MSD	24	 34	
5	MW-4-1	15		25	35	
16 1	MW-12-5	16		26	36	·
7	MW-12-4	17		27	 37	
7 2	MW-12-3	18		28	38	
5 2	MW-1 <u>2-</u> 2	19		29	 39	
10 ~	MW-12-1	20		30	40	

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	III. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. lodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	OOOO.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP. Pentach Wroetham
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ, tert-Butyl alcohol	тттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

LDC #: 3028041

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page: of Page: Pag 2nd Reviewer:_

METHOD: GC/MS VOA (EPA Method 524.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".N N/AWas a continuing calibration standard analyzed at least once every 12 hours for each instrumentN/AWere all percent differences (%D) \leq 30% ? Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

#	Datę	Standard ID	Compound	Finding %D (Limit: ≤30.0%)	Associated Samples	Qualifications
	7/15/12	CW- 1309516-	CV2 777	28.5	AII	THATIP
			PP PP	<u> </u>		
	<u> </u>	<u> </u>				
	·····					· · · · · · · · · · · · · · · · · · ·
			· ·			
·		· · · · · · · · · · · · · · · · · · ·				
					<u> </u>	
		· · · ·				
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	······			······································		
				· · · · · · · · · · · · · · · · · · ·		
	ļ					

LDC #: 302804	VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>	Page:of/ Reviewer:& <i>R</i> 2nd reviewer:
METHOD: GC/MS VOA (EPA SW 846	6 Method 8260B)	
Y N N/A Were field blanks ider Y N N/A Were target compound	ntified in this SDG? nds detected in the field blanks?	
Sample: Field	d Blank / Trip Blank / Rinsate / Other E3 (circle one)
	Compound	Concentration Units (M
CC		0.11
Sample: Field	d Blank / Trip Blank / Rinsate / Other (circle or	ne)
	Compound	Concentration Units ()
	······	
Sample: Field	d Blank / Trip Blank / Rinsate / Other (circle on	e)
	Compound	Concentration Units ()
······································		

LDC Report# 30280A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPI
-		

Collection Date:	July 22, 2013

LDC Report Date: August 28, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15307

Sample Identification

EB-6-7/22/13 MW-4-3 MW-4-2 MW-4-1 MW-12-3 MW-12-2 MW-12-1 MW-4-2MS MW-4-2MSD MW-4-2DUP MW-12-3MS MW-12-3MSD MW-12-3DUP

Introduction

This data review covers 13 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

ICP Interference check sample analysis was not required by the method.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Internal Standards (ICP-MS)

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

Sample EB-6-7/22/13 was identified as an equipment blank. No chromium was found.

NASA JPL Chromium - Data Qualification Summary - SDG 13-15307

No Sample Data Qualified in this SDG

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15307

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET
------------	-------	---------	-----------

Level III

SDG #: 13-15307 Laboratory: BC Laboratories, Inc.

LDC #: 30280A4

С METHOD: Metals (EPA Method-200.7/200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	A	Sampling dates: 7/22/17
_11.	ICP/MS Tune	A	
Ш.	Calibration	A	
IV.	Blanks	A	
_V.	ICP Interference Check Sample (ICS) Analysis	$\square N$	Not required
VI.	Matrix Spike Analysis	A	ms/D
VII.	Duplicate Sample Analysis	A	p.p.
VIII.	Laboratory Control Samples (LCS)	Ā	LESD
IX.	Internal Standard (ICP-MS)	$\mathcal{N}{\mathcal{N}}$	Nor revisence
<u>x</u> .	Furnace Atomic Absorption QC	N_{c}	
XI.	ICP Serial Dilution	N	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A,	
XIV.	Field Duplicates	\overline{N}	
XV	Field Blanks	ŃŊ	EB=1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Valida	alidated Samples: Wath					
1	EB-6-7/22/13	11	MW-4-2DUP	21	31	
2	MW-4-3	12	MW-12-3MS	22	32	
3	MW-4-2	13	MW-12-3MSD	23	33	
4	MW-4-1	14	MW-12-3DUP	24	34	
<u> </u>	MW-12-4	15		25	35	
6	MW-12-3	16		26	36	
7	MW-12-2	17		27	37	
8	MW-12-1	18		28	38	
9	MW-4-2MS	19		29	39	
10	MW-4-2MSD	20		30	40	

Notes:

LDC Report# 30280A6

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: NASA JPL
- Collection Date: July 22, 2013
- LDC Report Date: August 28, 2013
- Matrix: Water
- Parameters: Wet Chemistry
- Validation Level: EPA Level III
- Laboratory: BC Laboratories, Inc.
- Sample Delivery Group (SDG): 13-15307

Sample Identification

EB-6-7/22/13 MW-4-3 MW-4-2 MW-4-1 MW-12-5 MW-12-3 MW-12-3 MW-12-3 MW-12-1 MW-4-2MS MW-4-2MSD MW-4-2DUP MW-12-3MS MW-12-3MSD MW-12-3DUP

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 314.0 for Perchlorate and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

Raw data were not reviewed for this SDG.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Field Blanks

Sample EB-6-7/22/13 was identified as an equipment blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15307

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15307

No Sample Data Qualified in this SDG
LDC #: 30280A6	ALIDATION COMPLETENESS WORKSHEET	Date: 8
SDG #: <u>13-15307</u>	Level III	Page: \
Laboratory: BC Laboratories, Inc.	_	Reviewer:

	Date:	<u>8/26/B</u>
	Page:	<u>\of</u>
	Reviewer:	α
2nd	Reviewer:	

METHOD: Perchlorate (EPA Method 314.0), Hexavalent Chromium (EPA SW846 Method 7196)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

<u> </u>	Validation Area		Comments
<u> </u>	Technical holding times	A	Sampling dates: 7/22/13
11	Initial calibration	A	
ш.	Calibration verification	A	
IV	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	m s/D
VI.	Duplicates	A	Qp
<u></u>	Laboratory control samples	A	LCS
VIII.	Sample result verification	N	
IX.	Overall assessment of data	A	
<u> </u>	Field duplicates	\sim	
	Field blanks	NO	EB=1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Nes: NATA

1	EB-6-7/22/13	11	MW-4-2MSD	21	31	
2	MW-4-3	12	MW-4-2DUP	22	32	
3	MW-4-2	13	MW-12-3MS	23	33	
4	MW-4-1	14	MW-12-3MSD	24	34	
5	MW-12-5	15	MW-12-3DUP	25	35	
6	MW-12-4	16	· · · · · · · · · · · · · · · · · · ·	26	36	
7	MW-12-3	17		27	37	
8	MW-12-2	18		28	38	
9	MW-12-1	19		29	39	
10	MW-4-2MS	20	 	30	40	

Notes:_

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Page: 1_of 1_ Reviewer: CR 2nd reviewer: _____

Sample ID	Parameter
1-9	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6 (ClO_4)
1-47-9	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6^{4}$ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
0010-12	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $CrO + CO_{3}$
BIS	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOQ Cr θ (IO ₄)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_O-POAlk_CN_NH_TKN_TOC_Cr6+_ClO_

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPL

Collection Date: July 23, 2013

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15416

Sample Identification

TB-7-7/23/13 EB-7-7/23/13 MW-11-4 MW-11-3 MW-11-2 DUPE-6-3Q13 MW-21-5 MW-21-5 MW-21-4** DUPE-7-3Q13 MW-21-3 MW-21-3 MW-21-1 MW-21-3MS MW-21-3MSD

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 15 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/24/13	Pentachloroethane	46.6	All samples in SDG 13-15416	J (all detects) UJ (all non-detects)	Ρ

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. Compound Quantitation

All compound quantitations were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples MW-11-2 and DUPE-6-3Q13 and samples MW-21-4** and DUPE-7-3Q13 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Compound	MW-21-4**	DUPE-7-3Q13	RPD
Chloroform	9.2	9.9	7
cis-1,2-Dichloroethene	0.17	0.17	0
Tetrachloroethene	1.1	1.1	0
Trichloroethene	0.15	0.14	7

XVII. Field Blanks

Sample TB-7-7/23/13 was identified as a trip blank. No volatile contaminants were found.

Sample EB-7-7/23/13 was identified as an equipment blank. No volatile contaminants were found with the following exceptions:

Blank ID	Compound	Concentration
EB-7-7/23/13	Toluene	0.11 ug/L

NASA JPL Volatiles - Data Qualification Summary - SDG 13-15416

SDG	Sample	Compound	Flag	A or P	Reason
13-15416	TB-7-7/23/13 EB-7-7/23/13 MW-11-4 MW-11-3 MW-11-2 DUPE-6-3Q13 MW-11-1 MW-21-5 MW-21-5 MW-21-5 MW-21-4** DUPE-7-3Q13 MW-21-3 MW-21-2 MW-21-1	Pentachloroethane	J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL

Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15416

No Sample Data Qualified in this SDG

LDC #: 30280B1 VAL	IDATION COMPLETENESS WORKSHEET	Date: 8/26/13
SDG #: <u>1315416</u>	Level III/IV	Page:of
Laboratory: BC Laboratories, Inc.		Reviewer: <u>BR</u>
METHOD: GC/MS Volatiles (EPA M	athod 524.2)	2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
t.	Technical holding times		Sampling dates: 7/23/13
<u>II.</u>	GC/MS Instrument performance check	A	
	Initial calibration	A	RS05202 12
IV.	Continuing calibration/ICV	<u>sw</u>	1011 CCV = 302
V.	Blanks	A	
VI.	Surrogate spikes	<u>A</u>	
VII.	Matrix spike/Matrix spike duplicates	AX	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/RL/LOQ/LODs	4	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	A	Not reviewed for Level III validation.
XIV.	System performance	_ A-	Not reviewed for Level III validation.
XV.	Overall assessment of data	Ą	
XVI.	Field duplicates	SW	FO=*5+6,9+10
XVII.	Field blanks	Sw)	*TB = EB = 2

A = Acceptable N = Not provided/applicable Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

SW = See worksheet

					······	
1	TB-7-7/23/13	11	MVV-21-3	21	31	BWG1659-BLK1
12	EB-7-7/23/13	12	MW-21-2	22	32	·
3	MW-11-4	13	MW-21-1	23	33	
↓ 4	MW-11-3	14	#11ms	24	34	
5	MVV-11-2)	15	\$11msD	25	35	
6	DUPE-6-3Q13 D	16		26	36	
7	MVV-11-1	17		27	37	
8	MW-21-5	18		28	38	
9	MW-21-4**)	19		29	39	
10 10	DUPE-7-3Q13	20		30	40	

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA Method 524.2)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times		-		
All technical holding times were met.	/	<u> </u>		
Cooler temperature criteria was met.	/ /	t		
II. GC/MS Instrument performance check			1	
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration) (
Did the laboratory perform a 5 point calibration prior to sample analysis?	/_			
Were all percent relative standard deviations (%RSD) \leq 20%?				
IV. Continuing calibration	1			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<			
Were all percent differences (%D) <u><</u> 30%?				
V. Blanks	1		[]	
Was a method blank associated with every sample in this SDG?	\leq			·
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VII. Matrix spike/Matrix spike duplicates				
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?	\leq			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	<			
VIII. Laboratory control samples	, 			
Was an LCS analyzed for this SDG?	\square			
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD)				

VALIDATION FINDINGS CHECKLIST

Page:	² of ²
Reviewer	BR
2nd Reviewer:	1
	9

Validation Area	Yes	No	NA	Findings/Comments
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				<u> </u>
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards.			1	
Were internal standard area counts within +/-40% from the associated calibration standard?	<	- 		
Were retention times within - 30% of the last continuing calibration or +/- 50% of the initial calibration?				
XI. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	\leq			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?		_		
Were chromatogram peaks verified and accounted for?	_			
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	<			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			/	
Were relative intensities of the major ions within <u>+</u> 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data		2.5		
Overall assessment of data was found to be acceptable.	/			
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			,
Target compounds were detected in the field duplicates.				
XVII. Field blanks				
Field blanks were identified in this SDG.	/			
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. lodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	OOOO.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP. Pentachloraetham.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvvv.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: <u>lof</u> Reviewer: <u>BR</u> 2nd Reviewer: <u></u>

METHOD: GC/MS VOA (EPA Method 524.2)

Pk	ase	e see d	e qualifications below for all questions answered "N". Not applicable q	uestions are identified	as "N/A".
Y,) <u>N</u>	N/A	Was a continuing calibration standard analyzed at least once ev	very 12 hours for each	instrument?
Ŷ	N)	N/A	Were all percent differences (%D) < 30% ?		

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	712413	CW- 1309636-CCV	2 NWWN -B	46-6	ALI	TUJIT
			PPPP			
	· · ·			······································		
				· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·		
		· · · · ·				
		1. 1.				
				· · · · · · · · · · · · · · · · · · ·		
	· ·		· · · · · · · · · · · · · · · · · · ·			
			· · ·		· · ·	

LDC #: 30280 R))
-----------------	---

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	of
Reviewer:	BR
2nd reviewer:	F
-	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

b		
W	N	N/A
\mathbf{N}	Ν	N/A

Were field blanks identified in this SDG? 7 Were target compounds detected in the field blanks?

Sample: _____ Field Blank / Trip Blank / Rinsate / Other) EB (circle one)

Compound	Concentration
CC	0:11

Sample: _____ Field Blank / Trip Blank / Rinsate / Other _____ (circle one)

Compound	Concentration Units ()
	· · · · · · · · · · · · · · · · · · ·

Sample: ______ Field Blank / Trip Blank / Rinsate / Other_____ (circle one)

Compound	Concentration Units (

LDC#: 30280B1

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC MS Volatiles (EPA Method 524.2)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	·	
Compound	5	6	RPD
к	9.2	9.9	. 7
QQQ	0.17	0.17	0
AA .	1.1	1.1	0
S	0.15	0.14	7

V:\FIELD DUPLICATES\30280B1.wpd

LDC #: 30280B1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	of 2_
Reviewer:	BR
2nd Reviewer:	K
-	

METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

- $A_x = Area of Compound$
- average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)
- C_x = Concentration of compound, S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	1/28/2013	1,1-Dichloroethene (IS1)	0.989471	0.989471	0.966649	0.966649	10.96742	10.96742
	MS-V5		Trichloroethene (IS2)	0.363920	0.363920	0.3401073	0.3401073	11.08509	11.08509
			1,1,2,2-Tetrachloethane	0.589904	0.589903	0.5469105	0.5469105	6.836641	6.836634

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 30280B1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>2 of 2</u> Reviewer: BR

2nd Reviewer:

METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

- average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)
- C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(RRF 32/80 std)	(RRF 32/80 std)	(Initial)	(Initial)		
1	ICAL	7/15/2013	Allyl chloride (IS1)	0.782933	0.782933	0.7813251	0.7813251	3.290399	3.290397
	MS-V5		Methyl methacrylate (IS	0.073455	0.073455	0.07078616	0.07078616	7.125178	7.125173
			Pentachloroethane (IS3	0.407261	0.407261	0.423749	0.423749	12.85931	12.85932

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 30280B1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page:	of	•
Reviewer:	BR	
2nd Reviewer:	ĨQ.	

METHOD: GC/MS VOA (EPA Method 524.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound, Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration		Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound (IS)	(Initial)	(CC)	(CC)		1. A. A. A. A. A. A. A. A. A. A. A. A. A.
1	24JUL02	7/24/2013	1,1-Dichloroethene (IS1)	0.966649	0.9650942	0.9650942	0.2	0.2
			Trichloroethene (IS2)	0.340107	0.3234884	0.3234884	4.9	4.9
			1,1,2,2-Tetrachloethane	0.546910	0.5475156	0.5475156	0.1	0.1
2	24JUL03	7/24/2013	Allyl chloride (IS1)	0.781325	0.7807338	0.7807338	0.08	0.08
÷.,			Methyl methacrylate (IS	0.070786	0.07687946	0.07687946	8.6	8.6
			Pentachloroethane (IS3	0.423749	0.6210630	0.6210630	46.6	46.6

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 302.80 87

SDG #: Sec Cover

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	<u> </u>
Reviewer:	BR
2nd reviewer:	h

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:_____9

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8	10.00	10.02	loo	los	6
Bromofluorobenzene	10.07	8.95	89.5	89.5	0
1,2-Dichlorobenzene-d4	10.00	10.95	·110	110	6
Dibromofluoromethane					

Sample ID:

·	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample:)4/15

		Spi Add	ike led	Sample Concentration	Spiked S Concent	ample tration	Matrix	Spike	Matrix Spike	Duplicate	MS	S/MSD
Compound		(mg	(14	(MY	(lig	5/0	Percent R	ecovery	Percent R	ecovery		RPD
	MS	0	MSD			MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	25.	57	25.00	O	25.380	24.850	102	102	99.4	99.4	Z.11	2.11
Trichloroethene			1	1.86	26.380	26.280	98.1	98.1	97.7	97.7	0.380	0.380
Benzene				0	24.590	23.930	98.4	98.4	95.7	95.7	2.72	2.72
Toluene				δ	25.378	24.850	101	101.5	99.4	99.4	2.07	2.07
Chlorobenzene	L L		ł	U	24.920	23.73	79.7	99.7	24.9	94.9	4.89	4.89

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: <u>302808</u>) SDG #: <u>see corre</u>

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:	<u> of </u>
Reviewer:_	BR
2nd Reviewer:	l

METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BWG 1659 - BSI

	Sp	oike	Spiked Sample				LCSD				
Compound	Ad ()	ded <u>yz j J</u>	Concent	Concentration		Percent Recovery		Percent Recovery		RPD	
				LCSD	Reported	Recaic	Reported	Recalc	Reported	Recalculated	
1,1-Dichloroethene	25-00		24.940	<u> </u>	99-8	19.8					
Trichloroethene			24.500		98.0	98.0					
Benzene			23.95		95.8	95-8	/		/		
Toluene			25.100		100	100.4					
Chlorobenzene		J	24.230		96.9	76-9					
						,					
									· · · · · · · · · · · · · · · · · · ·		
	·				· · · · ·						

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	_(_of	
Reviewer:	B	R
2nd reviewer:_		<u>b-</u>
	/	

METHOD: GC/MS VOA (EPA Method 524.2)

Compo and ve	ound rified	results forS	reported with a p	ositive detect v	vere recalculated
Concer	ntratio	$n = \frac{(A_{\nu})(I_{\nu})(DF)}{(A_{\mu})(RRF)(V_{\nu})(\%S)}$	Example:	= 2	0.15 mg/c
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,,	<u> </u>	
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard			
l _s	=	Amount of internal standard added in nanograms (ng)	$Conc. = \frac{(2248)(10)}{(44702)(4.340)}$	$\frac{)(}{167})($	
RRF	=	Relative response factor of the calibration standard.	111021 0.510	(0)	
V,	=	Volume or weight of sample purged in milliliters (ml) or grams (g).	= 0. 1478607	17 Myle	
Df	=	Dilution factor.		V	
%S	=	Percent solids, applicable to soils and solid matrices only.			
			Reported	Calculated	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
				(//	(
	······································		<u>_</u>		
		·······			
	·····				

LDC Report# 30280B4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 23, 2013
LDC Report Date:	August 30, 2013
Matrix:	Water
Parameters:	Chromium
Validation Level:	EPA Level III & IV
Laboratory:	BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15416

Sample Identification

EB-7-7/23/13 MW-11-3 MW-11-2 DUPE-6-3Q13 MW-11-1 MW-21-5 MW-21-4** DUPE-7-3Q13 MW-21-3 MW-21-2 MW-21-2 MW-21-1 MW-21-3MS MW-21-3MSD MW-21-3DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 14 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Methods 200.8 for Chromium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Chromium	0.811 ug/L	MW-21-3 MW-21-2 MW-21-1

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-21-3	Chromium	0.98 ug/L	0.98U ug/L
MW-21-2	Chromium	1.2 ug/L	1.2U ug/L
MW-21-1	Chromium	1.4 ug/L	1.4U ug/L

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MW-11-2 and DUPE-6-3Q13 and samples MW-21-4** and DUPE-7-3Q13 were identified as field duplicates. No chromium was detected in any of the samples with the following exceptions:

	Concentr	ation (ug/L)	
Analyte	MW-21-4**	DUPE-7-3Q13	RPD
Chromium	1.6	1.6	0

XV. Field Blanks

Sample EB-7-7/23/13 was identified as an equipment blank. No chromium was found.

NASA JPL Chromium - Data Qualification Summary - SDG 13-15416

No Sample Data Qualified in this SDG

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15416

SDG	Sample	Analyte	Modified Final Concentration	A or P
13-15416	MW-21-3	Chromium	0.98U ug/L	A
13-15416	MW-21-2	Chromium	1.2U ug/L	A
13-15416	MW-21-1	Chromium	1.4U ug/L	A

LDC #: <u>30280B4</u> SDG #: <u>1315416</u>

VALIDATION COMPLETENESS WORKSHEET

Level III/IV

Date: <u>8/26</u>/13 Page: <u>of</u> Reviewer: <u>2</u> 2nd Reviewer: <u>2</u>

Laboratory: <u>BC Laboratories</u>, Inc.

METHOD: Method 200.7/200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	A	Sampling dates: 7 23/13
11.	ICP/MS Tune	$ \Delta $	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	N	Norrequireq
VI.	Matrix Spike Analysis	A	MSIO
VII.	Duplicate Sample Analysis	Å	$a \dot{c}$
VIII.	Laboratory Control Samples (LCS)	À	LĈS
IX.	Internal Standard (ICP-MS)	A	Not revie wedfor level III
Х.	Furnace Atomic Absorption QC	\mathcal{N}	
<u>xı.</u>	ICP Serial Dilution	N	
XII.	Sample Result Verification	A	Not reviewed for Level III validation.
XIII.	Overall Assessment of Data	A,	
XIV.	Field Duplicates	SW	(3,4) (7,6)
xv	Field Blanks	NO	EB=1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation \mathcal{WAKW}

1	EB-7-7/23/13	11	MW-21-1	21	31
2	MW-11-3	12	MW-21-3MS	22	32
3	MW-11-2	13	MW-21-3MSD	23	33
4	DUPE-6-3Q13	14	MW-21-3DUP	24	34
5	MW-11-1	15		25	35
6	MW-21-5	16		26	36
7	MW-21-4**	17		27	37
8	DUPE-7-3Q13	18		28	38
9	MW-21-3	19		29	39
10	MW-21-2	20		30	40

Notes:_

Method:Metals (EPA SW 846 Method 6010B/7000/6020)									
Validation Area	Yes	No	NA	Findings/Comments					
I. Technical holding times									
All technical holding times were met.	/								
Cooler temperature criteria was met.	/	- -							
II. ICP/MS Tune									
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	~								
Were %RSD of isotopes in the tuning solution ≤5%?		• 							
III. Calibration									
Were all instruments calibrated daily, each set-up time?									
Were the proper number of standards used?									
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?									
Were all initial calibration correlation coefficients ≥ 0.995?									
IV. Blanks									
Was a method blank associated with every sample in this SDG?									
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/							
V. ICP Interference Check Sample									
Were ICP interference check samples performed daily?			\leq						
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?			/	<u>^</u>					
VI. Matrix spike/Matrix spike duplicates									
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.		_	-						
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/						
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			/						
VII. Laboratory control samples		,							
Was an LCS anaylzed for this SDG?									
Was an LCS analyzed per extraction batch?									
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?									

Validation Area	Yes	No	NA	Findings/Comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0,995?			<	
Do all applicable analysies have duplicate injections? (Level IV only)	-			
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)				
Were analytical spike recoveries within the 85-115% QC limits?				
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		/	-	
Were all percent differences (%Ds) < 10%?			\square	<u> </u>
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.				
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?				
XI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
XII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	Ŷ		
XIII. Overall assessment of data	/			
Overall assessment of data was found to be acceptable.			-	
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.				
XV. Field blanks				
Field blanks were identified in this SDG.	/			
Target analytes were detected in the field blanks.		/		

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ua/L

Soil preparation factor applied: NA Associated Samples: 9-11

								Sam	ple Identifica	ation		
Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/l)	Maximum ICB/CCB ^a (ug/L)	Action Level	9	10	11					
Cr			0.811	4.055	0.98	1.2	1.4					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC#:<u>30280B4</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

	Concentra		
Analyte	7	8	RPD
Chromium	1.6	1.6	0

\\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30280B4.wpd

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found_x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
ICV	ICP/MS (Initial calibration)	ζ	50.987	50	102	107	Y
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
CCV.	ICP/MS (Continuing calibration)	L	40,982	40	102	102	\forall
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: <u>Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>|S-D|</u> x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 %D = <u>I-SDR</u> x 100
 Where, I = Initial Sample Result (mg/L)

 I
 SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)
N	ICP interference check						
LCS	Laboratory control sample	C	40.743	40	102	102	4
\sim	Matrix spike	•	(SSR-SR)				,
N	Duplicate						
N	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	OR
2nd reviewer:	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $(X \ N \ N/A)$ $(Y \ N \ N/A)$ $(Y \ N \$

Detected analyte results for ______ were recalculated and verified using the following equation:

Recalculation:

Concent	ration =	<u>(RD)(FV)(Dil)</u> (In. Vol.)			
RD	=	Raw data concentration			
FV	Ξ	Final volume (ml)			
In. Vol.	Ξ	Initial volume (ml) or weight (G)			
Dil	=	Dilution factor			

Ran Parta= 1,553.yg/L

#	Sample ID	Analyte	Reported Concentration (MS(L)	Calculated Concentration ・(ルパー)	Acceptable (Y/N)
	7	\sim	1.6	1,6	Y
		· · · · · · · · · · · · · · · · · · ·			
	· · ·				
					-
		· · · · · · · · · · · · · · · · · · ·			

Note:
LDC Report# 30280B6

Laboratory Data Consultants, Inc. Data Validation Report

Pro	iect/Site	Name:	NASA	JPL
		Humo.		

Collection	Date:	July 23.	2013
•••••••	D 4.001	0 aly 20,	

LDC Report Date: August 29, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15416

Sample Identification

EB-7-7/23/13 MW-11-4 MW-11-3 MW-11-2 DUPE-6-3Q13 MW-11-1 MW-21-5 MW-21-4** DUPE-7-3Q13 MW-21-3 MW-21-2 MW-21-1 **MW-11-1MS** MW-11-1MSD **MW-11-1DUP MW-21-3MS** MW-21-3MSD MW-21-3DUP

**Indicates sample underwent EPA Level IV review

Introduction

This data review covers 18 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Sulfate, and Nitrate as N, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrite as N, EPA SW 846 Method 7196 for Hexavalent Chromium, and EPA Method 365.1 for Orthophosphate as P.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples MW-11-2 and DUPE-6-3Q13 and samples MW-21-4** and DUPE-7-3Q13 were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	MW-21-4**	DUPE-7-3Q13	RPD (Limits)
Perchlorate	2.0	2.2	10 (≤50)

XI. Field Blanks

Sample EB-7-7/23/13 was identified as an equipment blank. No contaminant concentrations were found.

NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15416

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15416

No Sample Data Qualified in this SDG

LDC #: <u>30280B6</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>1315416</u>	Level III/IV
Laboratory: BC Laboratories, In	<u>c.</u>

Date: 8/26/13
Page: <u>∖</u> of <u>∖</u>
Reviewer: <u>A</u>
2nd Reviewer:

METHOD: Chloride, Sulfate, Nitrate-N (EPA Method 300.0), Perchlorate (EPA Method 314.0), Nitrite-N (EPA Method 353.2), Hexavalent Chromium (EPA SW846 Method 7196), Orthophosphate-P (EPA Method 365.1)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/73/13
11	Initial calibration	A	
	Calibration verification	A	
IV	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	MS/D
VI.	Duplicates	A	Qp
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	A	Not reviewed for Level III validation.
IX.	Overall assessment of data	A	
Х.	Field duplicates	SW	(4,5)(8,9)
x	Field blanks	ND	63=1

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	EB-7-7/23/13	11	MW-21-2	21	31
2	MW-11-4	12	MW-21-1	22	32
3	MW-11-3	13	MW-11-1MS	23	33
4	MW-11-2	14	MW-11-1MSD	24	34
5	DUPE-6-3Q13	15	MW-11-1DUP	25	35
6	MVV-11-1	16	MW-21-3MS	26	36
7	MW-21-5	17	MW-21-3MSD	27	37
8	MW-21-4**	18	MW-21-3DUP	28	38
9	DUPE-7-3Q13	19		29	39
10	MW-21-3	20		30	40

Notes:

Method: Inorganics (EPA Method Second)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		<u> </u>		
Cooler temperature criteria was met.		<u> </u>		
II. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?				
Were all initial calibration correlation coefficients <a> 0.995?				
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/	-		
Were titrant checks performed as required? (Level IV only)				
Were balance checks performed as required? (Level IV only)				
III. Blanks		-		
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/	-	
IV. Matrix spike/Matrix spike duplicates and Duplicates	-			
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/	```		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.		-		
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?				
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		\square		
Were the performance evaluation (PE) samples within the acceptance limits?			/	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification			_	
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were detection limits < RL?		(
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.	\langle	1		
Target analytes were detected in the field duplicates.	/			
X. Field blanks				
Field blanks were identified in this SDG.		<u> </u>		
Target analytes were detected in the field blanks.				

LDC #: 3026036

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Page: <u>1</u>	_of_	1
Reviewer:	CR	
2nd reviewer:	N	/

7

Sample ID	Parameter
6	pH TDE C) F NO3 NO2 SO20-PO) AIK CN NH3 TKN TOC Cr6+ CIO4
1-12	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ (ClO_4)
13-12	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6+ClO_4$
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC 13-15	pH TDS CI F NO ₃ (NO ₂)SO ₄ (\overline{O} -PO ₄)Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
16-18	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6$ CiO_4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_O-POAIK_CN_NH_TKN_TOC_Cr6+ CIO_

Comments:

LDC#<u>30280B6</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Inorganics: Method_See Cover_

	Concentra	Concentration (mg/L)			
Analyte	8	9	RPD (≤50)		
Perchlorate (ug/L)	2.0	2.2	10		

\LDCFILESERVER\Validation\FIELD DUPLICATES\FD_inorganic\30280B6.wpd

LDC #: 30780

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: Reviewer: 2nd Reviewer:

Method: Inorganics, Method See Cover

The correlation coefficient (r) for the calibration of <u>CIO</u> was recalculated. Calibration date: <u>7/22/</u>

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.0	0			
		s2	2	0.0022	0.99988	0.99982	
		s3	4	0.0042			
	Cla	s4	6	0.0062			
		s5	10	0.0103			
	L	s6	20	0.0209			
Calibration verification	Clay	CCV	10	10,773	103	103	
Calibration verification	L		2	9.661	96.2	96.2	
Calibration verification	C(67		0,05	00523519	105	105	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

١	1
Page:of_)
Reviewer: 92	`
2nd Reviewer: 1	

METHOD: Inorganics, Method ______

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found
 x 100
 Where,
 Found =
 concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

 True
 Found =
 SSR (spiked sample result) - SR (sample result).

 True = concentration of each analyte in the source.
 True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	ClOy	10,549	10	105	105	1
16	Matrix spike sample	C(6+	(SSR-SR) (), () 57063	0052632	108	108	
18	Duplicate sample	clay	2,9248	2.8249	3,46	3.46	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of	
Reviewer:	α	-
2nd reviewer:	(\sim

METHOD: Inorganics, Method _____Sel rover

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Have results been reported and calculated correctly? 'Y∖N N/A Y/N N/A

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

reported with a positive detect were

Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

Hrea

Slope

Y N N/A

Recalculation: 0.00 2 = 2.0Ng/L

Reported Calculated Concentration Concentration Acceptable (Mg/4 # Sample ID Analyte (man) (Y/N) 9 2,0 Q(C)

Note:____

LDC Report# 30280C1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Project/Site Name:	NASA JPI

Collection Date:	July 24, 2013
------------------	---------------

LDC Report Date: August 28, 2013

Matrix: Water

Parameters: Volatiles

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15509

Sample Identification

TB-8-7/24/13 MW-13 MW-16 MW-8 MW-13MS MW-13MSD

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/29/13	tert-Butyl alcohol Pentachloroethane	31.6 51.5	All samples in SDG 13-15509	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample TB-8-7/24/13 was identified as a trip blank. No volatile contaminants were found.

NASA JPL Volatiles - Data Qualification Summary - SDG 13-15509

SDG	Sample	Compound	Flag	A or P	Reason
13-15509	TB-8-7/24/13 MW-13 MW-16 MW-8	tert-Butyl alcohol Pentachloroethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15509

No Sample Data Qualified in this SDG

LDC #:	30	280C1		VAI	_IDATI	ON CO
SDG #:	13	-15509				
Labora	tory:_	BC Labo	oratories,	Inc.		

LIDATION COMPLETENESS WORKSHEET

Level III

Date:	8/27/13
raye	
Reviewer:	<u> </u>
2nd Reviewer:	_A_
)

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/24/13
	GC/MS Instrument performance check	A	
-111.	Initial calibration	A	RSD = 207, 12
IV.	Continuing calibration/ICV	SW	1CV / CCV = 302
V.	Blanks	A-	
_VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	AW	
VIII.	Laboratory control samples	<u>A</u>	EG
IX.	Regional Quality Assurance and Quality Control	N	
<u> </u>	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound guantitation/RL/LOQ/LODs	N	
XIII.	Tentatively identified compounds (TICs)	Ν	
XIV.	System performance	N	
XV.	Overall assessment of data	4	
XVI.	Field duplicates	λ	
XVII.	Field blanks	NO	16 = 1

Note: A =

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: Wito

1	TB-8-7/24/13	11	21	31 BWG1983-BLKI
† 2	MW-13	12	22	32
t 3	MW-16	13	23	33
1 4	MW-8	14	24	34
5	MW-13MS	15	25	35
6	MW-13MSD	16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	W. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. lodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	OOOO.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyłtoluene	PPPP. Pentach burgethane
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvvv.

LDC #: 30280C)

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: /_of_/_ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS VOA (EPA Method 524.2)

Please see qua	alifications below for all questions answered "N". Not applicable questions are identified as "N/A".	
(<u>Y/ N, N/A</u>	Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?)
Y(N/ N/A	Were all percent differences (%D) \leq 30% ?	

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	7/29/13	CCV - 130 9814-CA	(V2 222	31.6	All	JUJP
	/	, , , , , , , , , , , , , , , , , , , ,	PPPP	51.5		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·
					· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				
·		· · · · · · · · · · · · · · · · · · ·		·		
				· · · · · · · · · · · · · · · · · · ·	·	
					· · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·	· 	· · · · ·	
	·			· · · · ·		
			·	· · · · · · · · · · · · · · · · · · ·	·	·
<u> </u>	· · · · · · · · · · · · · · · · · · ·	ļ				
						<u> </u>
·				· · · ·		
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
!				·		
			·			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
					L	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	NASA JPL
--------------	-------	----------

Collection Date: July 24, 2013

LDC Report Date: August 27, 2013

Matrix: Water

Parameters: Chromium

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15509

Sample Identification

MW-13 MW-15 MW-16 MW-8

Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analysis was per EPA Method 200.8 for Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Chromium	0.811 ug/L	All samples in SDG 13-15509

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-8	Chromium	1.5 ug/L	1.5U ug/L

V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required.

VI. Matrix Spike Analysis

The laboratory has indicated that there was no matrix spike (MS) analysis specified for the samples in this SDG, and therefore matrix spike analysis was not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

No field blanks were identified in this SDG.

NASA JPL Chromium - Data Qualification Summary - SDG 13-15509

No Sample Data Qualified in this SDG

NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15509

SDG	Sample	Analyte	Modified Final Concentration	A or P
13-15509	MW-8	Chromium	1.5U ug/L	A

LDC #: <u>30280C4</u> SDG #: 13-15509

VALIDATION COMPLETENESS WORKSHEET

Level III

Laboratory: BC Laboratories, Inc.

METHOD: Metals (EPA Method 200.7/200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	Δ	Sampling dates: 7/24/13
11.	ICP/MS Tune	À	
	Calibration	A	
IV.	Blanks	Sh	
V.	ICP Interference Check Sample (ICS) Analysis	N	NO+ requireg
VI.	Matrix Spike Analysis	N	cs
VII.	Duplicate Sample Analysis	N	J
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	\mathcal{N}	Norrevieweg
Х.	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	\mathbb{N}	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N_{i}	
xv	Field Blanks	\overline{N}	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

, all

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	MW-13	11	21	31
2	MW-15	12	22	32
3	MW-16	13	23	33
4	MW-8	14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

Notes:

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

All

Soil preparation factor applied: NA

Associated Samples:

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ua/L


	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
							Sam	ple Identific:	ation		
Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Level	4			•			
Cr			0.811	4.055	1.5						

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

#### LDC Report# 30280C6

# Laboratory Data Consultants, Inc. Data Validation Report

	Pro	oject/Site	Name:	NASA	JPL
--	-----	------------	-------	------	-----

Collection Date: July 24, 2013

LDC Report Date: August 27, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15509

### Sample Identification

MW-13 MW-15 MW-16 MW-8 MW-13MS MW-13MSD MW-13DUP

#### Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Sulfate, and Nitrate as Nitrogen, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrate as Nitrogen, EPA Method 365.1 for Orthophosphate as Phosphorous, and EPA SW 846 Method 7196 for Hexavalent Chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Initial Calibration

All criteria for the initial calibration of each method were met.

#### III. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks

#### V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

#### **VII. Laboratory Control Samples**

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VIII. Sample Result Verification

Raw data were not reviewed for this SDG.

#### IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### X. Field Duplicates

No field duplicates were identified in this SDG.

## XI. Field Blanks

No field blanks were identified in this SDG.

## NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15509

No Sample Data Qualified in this SDG

NASA JPL

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15509

No Sample Data Qualified in this SDG

LDC #:	30280C6	VALIDATION COMPLETENESS WORKSHEET		
SDG #:_	1345509	Level III		
Laboratory: <u>BC Laboratories, Inc.</u>				

chain
Date: 0/6/13
Page: of
Reviewer:
2nd Reviewer:

METHOD: <u>Chloride, Sulfate, Nitrate-N (EPA Method 300.0)</u>, <u>Perchlorate (EPA Method 314.0)</u>, <u>Nitrite-N (EPA Method 353.2)</u>, <u>Hexavalent Chromium (EPA SW846 Method 7196)</u>, <u>Orthophosphate-P (EPA Method 365.1)</u>

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	A	Sampling dates: 7/24/13
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Blanks	A	
v	Matrix Spike/Matrix Spike Duplicates	A	ms/p
VI.	Duplicates	A	Dy
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	N	
IX.	Overall assessment of data	A	
X.	Field duplicates	N	
	Field blanks	17	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

1. DARA

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	MVV-13	11	21	31
2	MW-15	12	22	32
3	MVV-16	13	23	33
4	MVV-8	14	24	34
5	MW-13MS	15	25	35
6	MW-13MSD	16	26	36
7	MW-13DUP	17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

Notes:_



## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Page: <u>1</u>	_of <u>1</u>
Reviewer:	CR
2nd reviewer:	$\sim$

7

Sample ID	Parameter
1,34	ph TDS C) F $NO_3(NO_4 O_7O_4)$ Alk CN NH ₃ TKN TOC Cr6+(ClO ₄ )
1-4	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $(Cr6+)CIO_4$
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QUS-7	pH TDS CI F NO ₃ $(NO_2)$ SO ₄ $(O-PO_4)$ Alk CN NH ₃ TKN TO $(Cr6^{+})$ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_O-POAlk_CN_NH_TKN_TOC_Cr6+_ClO_

Comments:_
### LDC Report# 30280D1

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
Collection Date:	July 25, 2013
LDC Report Date:	August 29, 2013
Matrix:	Water
Parameters:	Volatiles
Validation Level:	EPA Level III & IV
Laboratory:	BC Laboratories, Inc
	,

Sample Delivery Group (SDG): 13-15617

## Sample Identification

TB-9-7/25/13 MW-6** MW-5 MW-10** MW-7

**Indicates sample underwent EPA Level IV review

#### Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 524.2 for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### **II. GC/MS Instrument Performance Check**

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/29/13	tert-Butyl alcohol Pentachloroethane	31.6 51.5	All samples in SDG 13-15617	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

The percent differences (%D) of the second source calibration standard were less than or equal to 30.0% for all compounds.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## IX. Regional Quality Assurance and Quality Control

Not applicable.

## X. Internal Standards

All internal standard areas and retention times were within QC limits.

## XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

#### XII. Compound Quantitation

All compound quantitations were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

## XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

#### XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

## XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## **XVI. Field Duplicates**

No field duplicates were identified in this SDG.

#### XVII. Field Blanks

Sample TB-9-7/25/13 was identified as a trip blank. No volatile contaminants were found.

## NASA JPL Volatiles - Data Qualification Summary - SDG 13-15617

SDG	Sample	Compound	Flag	A or P	Reason
13-15617	TB-9-7/25/13 MW-6** MW-5 MW-10** MW-7	tert-Butyl alcohol Pentachloroethane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Continuing calibration (%D)

## NASA JPL Volatiles - Laboratory Blank Data Qualification Summary - SDG 13-15617

No Sample Data Qualified in this SDG

LDC #: 30280D1	VALIDATION COMPLETENESS WORKSHEET	Date: 8/27/13
SDG #: <u>1315617</u>		Page: ( of /
Laboratory: BC Laboratories.	Inc.	Reviewer: <u>BR</u>
		2nd Reviewer:
METHOD: GC/MS Volatiles (	EPA Method 524.2)	V

METHOD: GC/MS Volatiles (EPA Method 524.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 7/25/13
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	A	$Rsp = 202, r^2$
IV.	Continuing calibration/ICV	_su	1CV CW = 30?
V.	Blanks	n	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	AN	MW-13 ms/p
VIII.	Laboratory control samples	A-	Les
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/RL/LOQ/LODs	A	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	A	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	ND	TB = 1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	TB-9-7/25/13	11	21	31 BWG1983-KLK1
12	MW-6**	12	22	32
3	MW-5	13	23	33
<b>₽</b> 4	MW-10**	14	24	34
5	MVV-7	15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

#### VALIDATION FINDINGS CHECKLIST

#### Method: Volatiles (EPA Method 524.2)

	<u> </u>	1		
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	i I	<u>لا</u>	I	
All technical holding times were met.	$\vdash$	<b>_</b>		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	1	1	l I	
Were the BFB performance results reviewed and found to be within the specified criteria?		-		
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?		[		
IV Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) <u>&lt;</u> 30%?				
V. Blanks				
Was a method blank associated with every sample in this SDG?	_			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within QC limits?	/	-		
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VII. Matrix spike/Matrix spike duplicates				
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
VIII. Laboratory control samples		,		
Was an LCS analyzed for this SDG?	$\square$			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the OC limits?				».

•

#### VALIDATION FINDINGS CHECKLIST

Page:_	^z of ^z
Reviewer:	BR
2nd Reviewer:	A
-	

Validation Area	Yes	No	NA	Findings/Comments
IX, Regional Quality Assurance and Quality Control	1			
Were performance evaluation (PE) samples performed?		/	Ĺ	
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within +/-40% from the associated calibration standard?	/			
Were retention times within - 30% of the last continuing calibration or +/- 50% of the initial calibration?				
XI. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			<	· · · · · · · · · · · · · · · · · · ·
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		/		
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	1			
Overall assessment of data was found to be acceptable.	/			
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		· · · · · ·
Target compounds were detected in the field duplicates.			$\square$	
XVII. Field blanks			l.	
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.		/		

#### TARGET COMPOUND WORKSHEET

#### **METHOD: VOA**

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. lodomethane
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	OOOO.1,1-Difluoroethane
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP. Pentachlor Detham
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	υυυυ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

## VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: <u></u>of <u></u> Reviewer: <u></u><u></u> 2nd Reviewer: <u></u>

### METHOD: GC/MS VOA (EPA Method 524.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".  $\frac{V N}{N/A}$  Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were all percent differences (%D)  $\leq$  30% ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 30.0%)	Associated Samples	Qualifications
	7/29/13	Car - 1309814- CC	VZ ZZZ	31. (	A-11	JUJIP
			PPPP	51.5		V
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
		·				
	·					
				-		
	·			·	·	
						·
	· ·				·	
		·				
	·					
		· ·				
	_					
		· · ·				
			· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·	
					·	

LDC #: 30280D1

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	of 2
Reviewer:	BR
2nd Reviewer:	l_
•	

#### METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ 

 $A_x$  = Area of Compound

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)  $C_x$  = Concentration of compound, S= Standard deviation of the RRFs,  $A_{is}$  = Area of associated internal standard  $C_{is}$  = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		· · · · · · · · · · · · · · · · · · ·
1	ICAL	1/28/2013	1,1-Dichloroethene (IS1	0.989471	0.989471	0.966649	0.966649	10.96742	10.96742
	MS-V5		Trichloroethene (IS2)	0.363920	0.363920	0.3401073	0.3401073	11.08509	11.08509
			1,1,2,2-Tetrachloethane	0.589904	0.589903	0.5469105	0.5469105	6.836641	6.836634

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 30280D1

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	2 of C
Reviewer:	BR
2nd Reviewer:	R

#### METHOD: GC/MS VOA (EPA Method 524.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ 

 $A_x = Area of Compound$ 

- average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)
- $C_x = Concentration of compound,$

S= Standard deviation of the RRFs,

 $A_{is}$  = Area of associated internal standard  $C_{is}$  = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(RRF 32/80 std)	(RRF 32/80 std)	(Initial)	(Initial)		
1	ICAL	7/15/2013	Allyl chloride (IS1)	0.782933	0.782933	0.7813251	0.7813251	3.290399	3.290397
	MS-V5		Methyl methacrylate (IS:	0.073455	0.073455	0.07078616	0.07078616	7.125178	7.125173
			Pentachloroethane (IS3	0.407261	0.407261	0.423749	0.423749	12.85931	12.85932

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 30280D1

#### VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page:	( of /	1
Reviewer:	BR	
2nd Reviewer:	an	

#### METHOD: GC/MS VOA (EPA Method 524.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

#### Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave, RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound, Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
	· ·	Calibration		Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound (IS)	(Initial)	(CC)	(CC)		
1	29JUL02	7/29/2013	1,1-Dichloroethene (IS1	0.966649	0.9694692	0.9694692	0.3	0.3
			Trichloroethene (IS2)	0.340107	0.3216172	0.3216172	5.4	5.4
			1,1,2,2-Tetrachloethane	0.546910	0.5857687	0.5857687	7.1	7.1
2	29JUL03	7/29/2013	Allyl chloride (IS1)	0.781325	0.7627464	0.7627464	2.4	2.4
			Methyl methacrylate (IS	0.070786	0.08813192	0.08813192	24.5	24.5
			Pentachloroethane (IS3	0.423749	0.6420282	0.6420282	51.5	51.5

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

## LDC #: 3028091 SDG #: <u>sec crow</u>

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification



#### METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 2

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8	10.00	10.22	102	102	6
Bromofluorobenzene	1	8.55	85.5	85.5	0
1,2-Dichlorobenzene-d4		10.50	105	105	9
Dibromofluoromethane					

#### Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

#### Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

•

#### Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichlorobenzene-d4					
Dibromofluoromethane					

## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>



#### METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = 1 MSC - MSDC 1 * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: MW-13 MS/D

Compound	Spike Added		Sample Concentration	Spiked Sample Concentration		Matrix Spike		Matrix Spike Duplicate		MS/MSD		
Compound		$\frac{\gamma}{\lambda}$	<u>/~/</u>				reicent		Fercent	ecovery		
	MS		MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	25.	ഗ	25.00	0.48	27.800	25.40	109	159	9 <b>9</b> .7	99.7	8.98	8.98
Trichloroethene	1			0.24	27.660	24.070	110	110	95.3	95.3	13.9	13.9
Benzene				Ũ	24.042	23.520	104	104	94.1	94.1	10.Z	10.2
Toluene				б	27.40	24.260	[] ]	110	97.0	6.79	12.2	12.2
Chlorobenzene	V		y	D	26.970	24.300	108	108	97.Z	97.2	10.4	12.4

# Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

## LDC #: 3028001

SDG #: Ste cover

## VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:	<u>l_of_</u>
Reviewer:	BR
2nd Reviewer:	0
****	$\sim$

#### METHOD: GC/MS VOA (EPA Method 524.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BWG 1983 - BS)

	Sp	Spike		Spiked Sample		s	I.C	SD		
Compound	Ad ر ر ر	ded {(し)	Concentration (My/4)		Percent I	Recovery	Percent F	Recovery	RF	סי
		I CSD		L CSD	Reported	Recalc.	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	25.00	l	28.240		113	113				
Trichloroethene		1	27.540		<u> </u>	111				
Benzene			26.470		106	106				{
Toluene			27-180		107	109				
Chlorobenzene	V	Ţ	26-820	V	107	107				<u> </u>
-				· · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·										

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

S

Page:_	of
Reviewer:	52
2nd reviewer:	0_
	Y

#### METHOD: GC/MS VOA (EPA Method 524.2)

Compo	bund	results for
and ve	rified	l using the following equation:
Conce	ntratio	$n = \frac{(A_{\nu})(I_{s})(DF)}{(A_{is})(RRF)(V_{o})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
$A_{is}$	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V _o	=	Volume or weight of sample purged in milliliters (ml) or grams (g).
Df	=	Dilution factor.
%S	=	Percent solids, applicable to soils and solid matrices only.

_reported with a positive detect were recalculated Example: S= 4.4 mg/c Sample I.D. _____

= 4.36/383385 mg/c

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Acceptable (Y/N)
				·····	

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 25, 2013

LDC Report Date:

Matrix:

Water

August 27, 2013

Parameters: Chromium

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15617

## Sample Identification

MW-6** MW-5 MW-10** MW-7

## **Indicates sample underwent EPA Level IV review

#### Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analysis was per EPA Method 200.8 for Chromium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

#### **III.** Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

#### IV. Blanks

Method blanks were reviewed for each matrix as applicable. No chromium contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Chromium	0.811 ug/L	All samples in SDG 13-15617

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-6**	Chromium	2.9 ug/L	2.9U ug/L
MW-5	Chromium	0.83 ug/L	0.83U ug/L
MW-10**	Chromium	3.3 ug/L	3.3U ug/L

#### V. ICP Interference Check Sample (ICS) Analysis

ICP interference check sample (ICS) analysis was not required by the method.

#### VI. Matrix Spike Analysis

The laboratory has indicated that there was no matrix spike (MS) analysis specified for the samples in this SDG, and therefore matrix spike analysis was not performed for this SDG.

## VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## IX. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

## X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

#### XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

#### XII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

#### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XIV. Field Duplicates

No field duplicates were identified in this SDG.

#### XV. Field Blanks

No field blanks were identified in this SDG.

## NASA JPL Chromium - Data Qualification Summary - SDG 13-15617

No Sample Data Qualified in this SDG

## NASA JPL Chromium - Laboratory Blank Data Qualification Summary - SDG 13-15617

SDG	Sample	Analyte	Modified Final Concentration	A or P
13-15617	MW-6**	Chromium	2.9U ug/L	A
13-15617	MW-5	Chromium	0.83U ug/L	A
13-15617	MW-10**	Chromium	3.3U ug/L	A

VALIDATION CO	MPLETENESS	WORKSHEET	
	1 1 1 1 1 1 1		

Level III/IV

Date: <u>8/26/3</u> Page: <u>of</u> Reviewer: <u>of</u> 2nd Reviewer: _____

Laboratory: BC Laboratories, Inc.

LDC #: 30280D4

SDG #: 13<del>1</del>5617

METHOD: Metals (EPA Method 200.7/200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	A	Sampling dates: 7/25/13
11.	ICP/MS Tune	A	
<u> </u>	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	N	Not required
VI.	Matrix Spike Analysis	N	CS
VII.	Duplicate Sample Analysis	$\mathbb{N}$	CS
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	À	Not reviewed for tevel III
<u>x</u> .	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	N	
XII.	Sample Result Verification	A	Not reviewed for Level III validation.
XIII.	Overall Assessment of Data	Ĥ	
XIV.	Field Duplicates	$\overline{\mathcal{N}}$	
xv	Field Blanks	$\overline{N}$	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	MW-6**	11	21	31
2	MVV-5	12	22	32
3	MW-10**	13	23	33
4	MW-7	14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

#### Notes:_





Validation Area	Yes	No	NA	Findings/Comments	
I. Technical holding times					
All technical holding times were met.	$\backslash$				
Cooler temperature criteria was met.					
II. ICP/MS Tune					
Were all isotopes in the tuning solution mass resolution within 0.1 amu?					
Were %RSD of isotopes in the tuning solution ≤5%?	/				
III. Calibration					
Were all instruments calibrated daily, each set-up time?	$\angle$				
Were the proper number of standards used?					
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?					
Were all initial calibration correlation coefficients <a> 0.995?</a>	/				
IV. Blanks					
Was a method blank associated with every sample in this SDG?	/				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.					
V. ICP Interference Check Sample					
Were ICP interference check samples performed daily?				(	
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?					
VI. Matrix spike/Matrix spike duplicates					
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.		1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.					
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were $\leq$ 5X the RL, including when only one of the duplicate sample values were $\leq$ 5X the RL.			/		
VII. Laboratory control samples	·····		<b></b>		
Was an LCS anaylzed for this SDG?					
Was an LCS analyzed per extraction batch?					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?					

#### Method:Metals (EPA SW 846 Method 6010B/7000/6020)



Validation Area	Yes	No	NA	Findings/Comments	
VIII. Furnace Atomic Absorption QC					
If MSA was performed, was the correlation coefficients > 0.995?			/		
Do all applicable analysies have duplicate injections? (Level IV only)					
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/	<i>f</i>	
Were analytical spike recoveries within the 85-115% QC limits?			/	[	
IX. ICP Serial Dilution					
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		/			
Were all percent differences (%Ds) < 10%?			/		
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			/		
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)					
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?					
If the %Rs were outside the criteria, was a reanalysis performed?			/		
XI. Regional Quality Assurance and Quality Control					
Were performance evaluation (PE) samples performed?					
Were the performance evaluation (PE) samples within the acceptance limits?			/		
XII. Sample Result Verification					
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/				
XIII. Overall assessment of data	$\mathcal{C}$				
Overall assessment of data was found to be acceptable.	/				
XIV. Field duplicates					
Field duplicate pairs were identified in this SDG.		$\bigwedge$			
Target analytes were detected in the field duplicates.			/		
XV. Field blanks					
Field blanks were identified in this SDG.		/	(		
Target analytes were detected in the field blanks.			1		

#### VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied: NA

Reviewe 2nd Reviewer

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units unless otherwise noted: ua/l

Sample (	nple Concentration units, unless otherwise noted: ug/L Associated Samples: All												
	-								Sam	ple Identifica	tion		
Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Level	1	2	3						
Cr			0.811	4.055	2.9	0.83	3.3						

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC #: 3020

## VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification



#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
FCV	ICP/MS (Initial calibration)	$\mathcal{C}$	48.128	50	96,3	96,3	4
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
CCV.	ICP/MS (Continuing calibration)	Cr	39.434	40	98.6	98.6	7
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: <u>Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>



## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet



#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>IS-DI</u> x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 %D = <u>|I-SDR|</u> x 100
 Where, I = Initial Sample Result (mg/L)

 I
 SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)
$\sim$	ICP interference check						
LCS	Laboratory control sample	C	49.728	40	107	102	4
$\wedge$	Matrix spike	·	(SSR-SR)				
N	Duplicate						
$\sim$	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	\of
Reviewer:	OR
2nd reviewer:	- <del>V</del>

#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

	Pleas	e see	qua
1	XN	N/A	•
	YN	N/A	
	Y/N	N/A	

Dil

lifications below for all questions answered "N". Not applicable questions are identified as "N/A". Have results been reported and calculated correctly? Are results within the calibrated range of the instruments and within the linear range of the ICP? Are all detection limits below the CRDL?

were recalculated and verified using the following Detected analyte results for _____ equation:

Concen	tration =	<u>(RD)(FV)(Dil)</u> (In. Vol.)
RD	=	Raw data conc
FV	Ŧ	Final volume (I
In Mat	_	

**Recalculation:** 

ncentration (ml)

Initial volume (ml) or weight (G) In, Vol.

=	Dilution factor

Raw Dara = 2,878 mg/L

#	Sample ID	Analyte	Reported Concentration ( wg14-	Calculated Concentration	Acceptable (Y/N)
		$\sim$	29	a.9	4
			:		
				· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·			

Note:

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NASA JPL
--------------------	----------

Collection Date: July 25, 2013

LDC Report Date: August 27, 2013

Matrix: Water

Parameters: Wet Chemistry

Validation Level: EPA Level III & IV

Laboratory: BC Laboratories, Inc.

Sample Delivery Group (SDG): 13-15617

#### Sample Identification

MW-6** MW-5 MW-10** MW-6MS MW-6MSD MW-6DUP MW-7MS MW-7MSD MW-7DUP

**Indicates sample underwent EPA Level IV review

#### Introduction

This data review covers 10 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Chloride, Sulfate, and Nitrate as Nitrogen, EPA Method 314.0 for Perchlorate, EPA Method 353.2 for Nitrite as Nitrogen, EPA Method 365.1 for Orthophosphate as Phosphorous, and EPA SW 846 Method 7196 for Hexavalent chromium.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Initial Calibration

All criteria for the initial calibration of each method were met.

#### III. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

#### V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VI. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

#### **VII. Laboratory Control Samples**

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VIII. Sample Result Verification

All sample result verifications were acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### IX. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## X. Field Duplicates

No field duplicates were identified in this SDG.

## XI. Field Blanks

No field blanks were identified in this SDG.

#### NASA JPL Wet Chemistry - Data Qualification Summary - SDG 13-15617

No Sample Data Qualified in this SDG

NASA JPL Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 13-15617

No Sample Data Qualified in this SDG

LDC #:_	30280D6	VALIDATION COM
SDG #:_	1 <b>34</b> 5617	
Laborat	ory: <u>BC Labo</u> i	ratories, Inc.

## IPLETENESS WORKSHEET

Level III/IV

Date: 876/3
Page: <u>\</u> of <u>\</u>
Reviewer: 01
2nd Reviewer:

METHOD: <u>Chloride, Sulfate, Nitrate-N (EPA Method 300.0)</u>, <u>Perchlorate (EPA Method 314.0)</u>, <u>Nitrite-N (EPA Method 353.2)</u>, <u>Hexavalent Chromium (EPA SW846 Method 7196)</u>, <u>Orthophosphate-P (EPA Method 365.1)</u>

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

<u> </u>	Validation Area		<u>Comments</u>
<u> </u>	Technical holding times	A	Sampling dates: 7/25/13
<u> </u>	Initial calibration	A	
.	Calibration verification	A	
IV	Blanks	A	
V	Matrix Spike/Matrix Spike Duplicates	A	ms/p
VI.	Duplicates	A	QP
VII.	Laboratory control samples	A	LES
VIII.	Sample result verification		Not reviewed for Level III validation.
IX.	Overall assessment of data	A	
Х.	Field duplicates	N,	
L_xL_	Field blanks		

Note:

ŧ

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:** Indicates sample underwent Level IV validation

1	MW-6**	11	21	31
2	MW-5	12	22	32
3	MW-10**	13	23	33
4	MW-7	14	24	34
5	MW-6MS	15	25	35
6	MW-6MSD	16	26	36
7	MW-6DUP	17	27	37
8	MW-7MS	18	28	38
9	MW-7MSD	19	29	39
10	MW-7DUP	20	30	40

Notes:_


## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Page:	<u>1_</u> of	1
Reviewer:	CR	
2nd reviewer:	:\/_	$\geq$

Sample ID	Parameter
4	pH TDS $(CI)$ $F(NO_3)$ $(NO_2)$ $SO_4$ $O_2PO_4$ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
1-4	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOO $Cr6+ClO_4$
U U	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
Q:5-7	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ $(CO_4)$
8-0	pH TDS CI F NO ₃ $(NO_2)$ SO ₄ $(O-PO_4)$ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_O-POAlk_CN_NH_TKN_TOC_Cr6+_ClO_

Comments:_





Method: Inorganics (EPA Method Second )				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	/			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	$\square$			
Were the proper number of standards used?				
Were all initial calibration correlation coefficients $\geq$ 0.995?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/	-		
Were titrant checks performed as required? (Level IV only)				c
Were balance checks performed as required? (Level IV only)			/	
III. Blanks				
Was a method blank associated with every sample in this SDG?	_			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	1			
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL.				
V. Laboratory control samples		·····		
Was an LCS anaylzed for this SDG?	1			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/	/	
Were the performance evaluation (PE) samples within the acceptance limits?			/	



#### VALIDATION FINDINGS CHECKLIST



Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were detection limits < RL?				
VIII. Overall assessment of data	~			
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		(		
Target analytes were detected in the field duplicates.				
X. Field blanks				
Field blanks were identified in this SDG.		1		-
Target analytes were detected in the field blanks.				

LDC #: 352800

#### Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: Reviewer: C

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of 2/24 was recalculated Calibration date: 7/22/13

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

						Recalculated	Reported	Acceptable
Type of analysis	Ana	alyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration			s1	0.0	0			
			s2	2	0.0022	0.99988	0.99982	
		n	s3	4	0.0042			
		14	s4	6	0.0062			4
			s5	10	0.0103			l
			S6	20	0.0209			
Calibration verification			CV	10	9,1890	91,01	91,9	
Calibration verification	C(	.6+		065	0.051317	103	103	
Calibration verification			Z		0.05,1278	103	103	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

.

Page: \ of )
Reviewer: <u></u>
2nd Reviewer:

METHOD: Inorganics, Method Stecarer

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found
 x 100
 Where,
 Found =
 concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	004	10.989	10	(()	110	Y
5	Matrix spike sample	00	(ssr-sr) 9,8765	(0.10)	97,8	97,8	
7	Duplicate sample	Cloy	34665	3.1260	10,3	10.3	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



# VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of
Reviewer:	Q2-
2nd reviewer:	

SRECOVER METHOD: Inorganics, Method ____

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>N_N/A</u> Have results been reported and calculated correctly? Y/N N/A

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

reported with a positive detect were

 $\frac{0.004}{2.001} = 4.0 \text{ mg/L}$ 

Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

Y N N/A

Recalculation:

rea lope

Y

#	Sample ID	Analyte	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
	1	00	لكوم	40	4
		CAY	2,5	1.0	
		· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·		·		
·					
	L				

Note: